These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30827213)

  • 1. On the theory of the unsteady-state growth of spherical crystals in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180209. PubMed ID: 30827213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transformations in metastable liquids combined with polymerization.
    Ivanov AA; Alexandrova IV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180215. PubMed ID: 30827217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nonlinear growth rates of spherical crystals and their withdrawal rate from a crystallizer on the particle-size distribution function.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180210. PubMed ID: 30827205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquid.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200307. PubMed ID: 34275364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the theory of crystal growth in metastable systems with biomedical applications: protein and insulin crystallization.
    Alexandrov DV; Nizovtseva IG
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180214. PubMed ID: 30827215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of particulate assemblages in metastable liquids: a test of theory with nucleation and growth kinetics.
    Alexandrova IV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190245. PubMed ID: 32279636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous materials: metastable and non-ergodic internal structures.
    Alexandrov DV; Zubarev AY
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180353. PubMed ID: 30827206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation and growth dynamics of ellipsoidal crystals in metastable liquids.
    Nikishina MA; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200306. PubMed ID: 34275366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A complete analytical solution of the Fokker-Planck and balance equations for nucleation and growth of crystals.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation.
    Alexandrov DV; Ivanov AA; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical law of the phase interface motion in the presence of crystals nucleation.
    Toropova LV; Alexandrov DV
    Sci Rep; 2022 Jun; 12(1):10997. PubMed ID: 35768561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of polymer crystallization in highly supercooled melt: primary nucleation and cold crystallization.
    Yamamoto T
    J Chem Phys; 2010 Jul; 133(3):034904. PubMed ID: 20649356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems.
    Galenko PK; Alexandrov DV; Titova EA
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of rapid solidification and crystal growth kinetics in glass-forming alloys.
    Galenko PK; Ankudinov V; Reuther K; Rettenmayr M; Salhoumi A; Kharanzhevskiy EV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180205. PubMed ID: 30827218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metastable liquid melted from a crystalline solid under decompression.
    Lin C; Smith JS; Sinogeikin SV; Kono Y; Park C; Kenney-Benson C; Shen G
    Nat Commun; 2017 Jan; 8():14260. PubMed ID: 28112152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From nucleation and coarsening to coalescence in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190247. PubMed ID: 32279640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Ideal glassformers" vs "ideal glasses": studies of crystal-free routes to the glassy state by "potential tuning" molecular dynamics, and laboratory calorimetry.
    Kapko V; Zhao Z; Matyushov DV; Austen Angell C
    J Chem Phys; 2013 Mar; 138(12):12A549. PubMed ID: 23556800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of steady-state crystal growth and homogeneous nucleation in polyethylene-like polymer.
    Yamamoto T
    J Chem Phys; 2008 Nov; 129(18):184903. PubMed ID: 19045427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics methodology to investigate steady-state heterogeneous crystal growth.
    Vatamanu J; Kusalik PG
    J Chem Phys; 2007 Mar; 126(12):124703. PubMed ID: 17411148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-field modeling on morphological landscape of isotactic polystyrene single crystals.
    Xu H; Matkar R; Kyu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011804. PubMed ID: 16089990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.