These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 30827219)
1. Effect of interparticle interaction on magnetic hyperthermia: homogeneous spatial distribution of the particles. Abu-Bakr AF; Zubarev A Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180216. PubMed ID: 30827219 [TBL] [Abstract][Full Text] [Related]
2. Effect of internal chain-like structures on magnetic hyperthermia in non-liquid media. Zubarev AY Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180213. PubMed ID: 30827209 [TBL] [Abstract][Full Text] [Related]
3. Magnetic hyperthermia in a system of immobilized magnetically interacting particles. Zubarev AY Phys Rev E; 2019 Jun; 99(6-1):062609. PubMed ID: 31330714 [TBL] [Abstract][Full Text] [Related]
4. Effect of ring-shaped clusters on magnetic hyperthermia: modelling approach. Abu-Bakr AF; Zubarev AY Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200316. PubMed ID: 34275367 [TBL] [Abstract][Full Text] [Related]
5. Dynamic susceptibility of soft ferrogels. Effect of interparticle interaction. Zubarev AY Soft Matter; 2023 Oct; 19(41):7988-7994. PubMed ID: 37819192 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties of magnetic gels containing rod-like composite particles. Abrougui MM; Lopez-Lopez MT; Duran JDG Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180218. PubMed ID: 30827211 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneous materials: metastable and non-ergodic internal structures. Alexandrov DV; Zubarev AY Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180353. PubMed ID: 30827206 [TBL] [Abstract][Full Text] [Related]
8. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic magnetic hydrogels: design, structure and mechanical properties. Gila-Vilchez C; Mañas-Torres MC; Contreras-Montoya R; Alaminos M; Duran JDG; de Cienfuegos LÁ; Lopez-Lopez MT Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180217. PubMed ID: 30827221 [TBL] [Abstract][Full Text] [Related]
10. The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy. Saville SL; Qi B; Baker J; Stone R; Camley RE; Livesey KL; Ye L; Crawford TM; Mefford OT J Colloid Interface Sci; 2014 Jun; 424():141-51. PubMed ID: 24767510 [TBL] [Abstract][Full Text] [Related]
11. Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia. Mamiya H; Fukumoto H; Cuya Huaman JL; Suzuki K; Miyamura H; Balachandran J ACS Nano; 2020 Jul; 14(7):8421-8432. PubMed ID: 32574042 [TBL] [Abstract][Full Text] [Related]
12. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles. Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262 [TBL] [Abstract][Full Text] [Related]
13. Effects of nonlinear growth rates of spherical crystals and their withdrawal rate from a crystallizer on the particle-size distribution function. Makoveeva EV; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180210. PubMed ID: 30827205 [TBL] [Abstract][Full Text] [Related]
14. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications. Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092 [TBL] [Abstract][Full Text] [Related]
15. Magnetic particle hyperthermia: Néel relaxation in magnetic nanoparticles under circularly polarized field. de Châtel PF; Nándori I; Hakl J; Mészáros S; Vad K J Phys Condens Matter; 2009 Mar; 21(12):124202. PubMed ID: 21817444 [TBL] [Abstract][Full Text] [Related]
16. On the theory of magnetic hyperthermia: clusterization of nanoparticles. Abu-Bakr AF; Zubarev AY Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190251. PubMed ID: 32279630 [TBL] [Abstract][Full Text] [Related]
17. On anisotropic mechanical properties of heterogeneous magnetic polymeric composites. Borin D; Stepanov G; Dohmen E Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180212. PubMed ID: 30827208 [TBL] [Abstract][Full Text] [Related]
18. Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions. Lebedev AV; Stepanov VI; Kuznetsov AA; Ivanov AO; Pshenichnikov AF Phys Rev E; 2019 Sep; 100(3-1):032605. PubMed ID: 31639971 [TBL] [Abstract][Full Text] [Related]
19. Theory of static magnetization of magnetopolymer composites: The second virial approximation. Elfimova EA; Iskakova LY; Solovyova AY; Zubarev AY Phys Rev E; 2021 Nov; 104(5-1):054616. PubMed ID: 34942844 [TBL] [Abstract][Full Text] [Related]
20. Effect of magnetic anisotropy and interaction on spatial focused hyperthermia for rotating and oscillating fields. Vékony V; Márián IG; Szabó IA Heliyon; 2024 Oct; 10(19):e38290. PubMed ID: 39391519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]