BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 30827541)

  • 1. Inbreeding and effective population size in French dairy sheep: Comparison between genomic and pedigree estimates.
    Rodríguez-Ramilo ST; Elsen JM; Legarra A
    J Dairy Sci; 2019 May; 102(5):4227-4237. PubMed ID: 30827541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Islands of runs of homozygosity indicate selection signatures in
    Rodríguez-Ramilo ST; Reverter A; Legarra A
    JDS Commun; 2021 May; 2(3):132-136. PubMed ID: 36339500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inbreeding, effective population size, and coancestry in the Latxa dairy sheep breed.
    Granado-Tajada I; Rodríguez-Ramilo ST; Legarra A; Ugarte E
    J Dairy Sci; 2020 Jun; 103(6):5215-5226. PubMed ID: 32253040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and pedigree estimation of inbreeding depression for semen traits in the Basco-Béarnaise dairy sheep breed.
    Antonios S; Rodríguez-Ramilo ST; Aguilar I; Astruc JM; Legarra A; Vitezica ZG
    J Dairy Sci; 2021 Mar; 104(3):3221-3230. PubMed ID: 33358787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds.
    Mastrangelo S; Tolone M; Di Gerlando R; Fontanesi L; Sardina MT; Portolano B
    Animal; 2016 May; 10(5):746-54. PubMed ID: 27076405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds.
    Zhang Q; Calus MP; Guldbrandtsen B; Lund MS; Sahana G
    BMC Genet; 2015 Jul; 16():88. PubMed ID: 26195126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds.
    Mastrangelo S; Ciani E; Sardina MT; Sottile G; Pilla F; Portolano B;
    Anim Genet; 2018 Feb; 49(1):71-81. PubMed ID: 29333609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of genomic inbreeding parameters in seven commercial and autochthonous pig breeds.
    Schiavo G; Bovo S; Bertolini F; Tinarelli S; Dall'Olio S; Nanni Costa L; Gallo M; Fontanesi L
    Animal; 2020 May; 14(5):910-920. PubMed ID: 31928538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within- and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Béarnaise.
    Legarra A; Baloche G; Barillet F; Astruc JM; Soulas C; Aguerre X; Arrese F; Mintegi L; Lasarte M; Maeztu F; Beltrán de Heredia I; Ugarte E
    J Dairy Sci; 2014 May; 97(5):3200-12. PubMed ID: 24630656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Runs of homozygosity analysis of South African sheep breeds from various production systems investigated using OvineSNP50k data.
    Dzomba EF; Chimonyo M; Pierneef R; Muchadeyi FC
    BMC Genomics; 2021 Jan; 22(1):7. PubMed ID: 33407115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data.
    Zanella R; Peixoto JO; Cardoso FF; Cardoso LL; Biegelmeyer P; Cantão ME; Otaviano A; Freitas MS; Caetano AR; Ledur MC
    Genet Sel Evol; 2016 Mar; 48():24. PubMed ID: 27029213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity and the application of runs of homozygosity-based methods for inbreeding estimation in German White-headed Mutton sheep.
    Addo S; Klingel S; Thaller G; Hinrichs D
    PLoS One; 2021; 16(5):e0250608. PubMed ID: 33956807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the genetic diversity of Belgian Milk Sheep using medium-density SNP genotypes.
    Meyermans R; Gorssen W; Wijnrocx K; Lenstra JA; Vellema P; Buys N; Janssens S
    Anim Genet; 2020 Mar; 51(2):258-265. PubMed ID: 31881555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimations of linkage disequilibrium, effective population size and ROH-based inbreeding coefficients in Spanish Churra sheep using imputed high-density SNP genotypes.
    Chitneedi PK; Arranz JJ; Suarez-Vega A; García-Gámez E; Gutiérrez-Gil B
    Anim Genet; 2017 Aug; 48(4):436-446. PubMed ID: 28543827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating inbreeding rate and effective population size in the Finnish Ayrshire population in the era of genomic selection.
    Sarviaho K; Uimari P; Martikainen K
    J Anim Breed Genet; 2023 May; 140(3):343-353. PubMed ID: 36808142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle.
    Illa SK; Mumtaz S; Nath S; Mukherjee S; Mukherjee A
    J Appl Genet; 2024 Feb; 65(1):167-180. PubMed ID: 38110827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pedigree and genome-based patterns of homozygosity in the South African Ayrshire, Holstein, and Jersey breeds.
    Visser C; Lashmar SF; Reding J; Berry DP; van Marle-Köster E
    Front Genet; 2023; 14():1136078. PubMed ID: 37007942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimates of Autozygosity Through Runs of Homozygosity in Farmed Coho Salmon.
    Yoshida GM; Cáceres P; Marín-Nahuelpi R; Koop BF; Yáñez JM
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle.
    Peripolli E; Stafuzza NB; Munari DP; Lima ALF; Irgang R; Machado MA; Panetto JCDC; Ventura RV; Baldi F; da Silva MVGB
    BMC Genomics; 2018 Jan; 19(1):34. PubMed ID: 29316879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle.
    Forutan M; Ansari Mahyari S; Baes C; Melzer N; Schenkel FS; Sargolzaei M
    BMC Genomics; 2018 Jan; 19(1):98. PubMed ID: 29374456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.