These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30827589)
41. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging. Lantano C; Alfieri I; Cavazza A; Corradini C; Lorenzi A; Zucchetto N; Montenero A Food Chem; 2014 Dec; 165():342-7. PubMed ID: 25038685 [TBL] [Abstract][Full Text] [Related]
42. Whey protein film with oxygen scavenging function by incorporation of ascorbic acid. Janjarasskul T; Tananuwong K; Krochta JM J Food Sci; 2011; 76(9):E561-8. PubMed ID: 22416701 [TBL] [Abstract][Full Text] [Related]
43. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Apak R; Güçlü K; Ozyürek M; Karademir SE J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784 [TBL] [Abstract][Full Text] [Related]
44. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Ramos M; Jiménez A; Peltzer M; Garrigós MC Food Chem; 2014 Nov; 162():149-55. PubMed ID: 24874370 [TBL] [Abstract][Full Text] [Related]
45. Chelating fibers prepared with a wet spinning technique using a mixture of a viscose solution and a polymer ligand for the separation of metal ions in an aqueous solution. Kagaya S; Miyazaki H; Inoue Y; Kato T; Yanai H; Kamichatani W; Kajiwara T; Saito M; Tohda K J Hazard Mater; 2012 Feb; 203-204():370-3. PubMed ID: 22209589 [TBL] [Abstract][Full Text] [Related]
46. How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions. Uluata S; McClements DJ; Decker EA J Agric Food Chem; 2015 Feb; 63(6):1819-24. PubMed ID: 25650525 [TBL] [Abstract][Full Text] [Related]
47. Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Noronha CM; de Carvalho SM; Lino RC; Barreto PL Food Chem; 2014 Sep; 159():529-35. PubMed ID: 24767092 [TBL] [Abstract][Full Text] [Related]
49. Triggering mechanisms for oxygen-scavenging function of ascorbic acid-incorporated whey protein isolate films. Janjarasskul T; Min SC; Krochta JM J Sci Food Agric; 2013 Sep; 93(12):2939-44. PubMed ID: 23450783 [TBL] [Abstract][Full Text] [Related]
50. The use of active compounds to shape the quality of active double-layer films based on furcellaran intended for packaging salad-dressing - Assessment of utilitarian and storage properties. Nowak N; Cholewa-Wójcik A; Tkaczewska J; Grzebieniarz W; Tkacz K; Modzelewska-Kapituła M; Zduńczyk W; Kopeć M; Jamróz E Food Chem; 2024 Apr; 438():137957. PubMed ID: 37976877 [TBL] [Abstract][Full Text] [Related]
51. Comparative evaluation of disodium edetate and diethylenetriaminepentaacetic acid as iron chelators to prevent metal-catalyzed destabilization of a therapeutic monoclonal antibody. Zhou S; Zhang B; Sturm E; Teagarden DL; Schöneich C; Kolhe P; Lewis LM; Muralidhara BK; Singh SK J Pharm Sci; 2010 Oct; 99(10):4239-50. PubMed ID: 20737631 [TBL] [Abstract][Full Text] [Related]
52. Ascorbic acid-containing whey protein film coatings for control of oxidation. Min S; Krochta JM J Agric Food Chem; 2007 Apr; 55(8):2964-9. PubMed ID: 17367158 [TBL] [Abstract][Full Text] [Related]
53. Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry. Campos D; Piccirillo C; Pullar RC; Castro PM; Pintado MM J Sci Food Agric; 2014 Aug; 94(10):2097-103. PubMed ID: 24338865 [TBL] [Abstract][Full Text] [Related]
54. Inhibitory effect of sugars and polyols on the metal-catalyzed oxidation of human relaxin. Li S; Patapoff TW; Nguyen TH; Borchardt RT J Pharm Sci; 1996 Aug; 85(8):868-72. PubMed ID: 8863279 [TBL] [Abstract][Full Text] [Related]
55. Effect of chelating agents and spice-derived antioxidants on myoglobin oxidation in a lipid-free model system. Allen K; Cornforth D J Food Sci; 2009 Jun; 74(5):C375-9. PubMed ID: 19646030 [TBL] [Abstract][Full Text] [Related]
56. Polyethylene glycol grafted polyethylene: a versatile platform for nonmigratory active packaging applications. Barish JA; Goddard JM J Food Sci; 2011; 76(9):E586-91. PubMed ID: 22416704 [TBL] [Abstract][Full Text] [Related]
57. Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand. Noro S; Mizutani J; Hijikata Y; Matsuda R; Sato H; Kitagawa S; Sugimoto K; Inubushi Y; Kubo K; Nakamura T Nat Commun; 2015 Jan; 6():5851. PubMed ID: 25592677 [TBL] [Abstract][Full Text] [Related]
58. Effects of nano-TiO Li D; Ye Q; Jiang L; Luo Z J Sci Food Agric; 2017 Mar; 97(4):1116-1123. PubMed ID: 27282949 [TBL] [Abstract][Full Text] [Related]
59. Enhancing the release of the antioxidant tocopherol from polypropylene films by incorporating the natural plasticizers lecithin, olive oil, or sunflower oil. López de Dicastillo C; Ares Pernas A; Castro López Mdel M; López Vilariño JM; González Rodríguez MV J Agric Food Chem; 2013 Dec; 61(48):11848-57. PubMed ID: 24188459 [TBL] [Abstract][Full Text] [Related]
60. Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Busolo MA; Fernandez P; Ocio MJ; Lagaron JM Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Nov; 27(11):1617-26. PubMed ID: 20711905 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]