BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1395 related articles for article (PubMed ID: 30827681)

  • 1. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity.
    van Galen P; Hovestadt V; Wadsworth Ii MH; Hughes TK; Griffin GK; Battaglia S; Verga JA; Stephansky J; Pastika TJ; Lombardi Story J; Pinkus GS; Pozdnyakova O; Galinsky I; Stone RM; Graubert TA; Shalek AK; Aster JC; Lane AA; Bernstein BE
    Cell; 2019 Mar; 176(6):1265-1281.e24. PubMed ID: 30827681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone Marrow Clonogenic Myeloid Progenitors from
    Guardia RD; González-Silva L; López-Millán B; Rodríguez-Sevilla JJ; Baroni ML; Bueno C; Anguita E; Vives S; Palomo L; Lapillonne H; Varela I; Menendez P
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31936647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape of T Cells in NK-AML(M4/M5) Revealed by Single-Cell Sequencing.
    Wu W; Liang X; Li H; Huang X; Wan C; Xie Q; Liu Z
    J Leukoc Biol; 2022 Oct; 112(4):745-758. PubMed ID: 35258858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy.
    Hu X; Cao D; Zhou Z; Wang Z; Zeng J; Hong WX
    Cell Oncol (Dordr); 2024 Feb; 47(1):97-112. PubMed ID: 37615858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-cell survey of cellular hierarchy in acute myeloid leukemia.
    Wu J; Xiao Y; Sun J; Sun H; Chen H; Zhu Y; Fu H; Yu C; E W; Lai S; Ma L; Li J; Fei L; Jiang M; Wang J; Ye F; Wang R; Zhou Z; Zhang G; Zhang T; Ding Q; Wang Z; Hao S; Liu L; Zheng W; He J; Huang W; Wang Y; Xie J; Li T; Cheng T; Han X; Huang H; Guo G
    J Hematol Oncol; 2020 Sep; 13(1):128. PubMed ID: 32977829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell RNA sequencing of AML initiating cells reveals RNA-based evolution during disease progression.
    Stetson LC; Balasubramanian D; Ribeiro SP; Stefan T; Gupta K; Xu X; Fourati S; Roe A; Jackson Z; Schauner R; Sharma A; Tamilselvan B; Li S; de Lima M; Hwang TH; Balderas R; Saunthararajah Y; Maciejewski J; LaFramboise T; Barnholtz-Sloan JS; Sekaly RP; Wald DN
    Leukemia; 2021 Oct; 35(10):2799-2812. PubMed ID: 34244611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell transcriptomic analysis of the immune microenvironment in pediatric acute leukemia.
    Yuan J; Zhang J; Zhao B; Liu F; Liu T; Duan Y; Chen Y; Chen X; Zou Y; Zhang L; Guo Y; Yang W; Yang Y; Wei J; Zhu X; Zhang Y
    Cancer Lett; 2024 Aug; 596():217018. PubMed ID: 38844062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paired single-B-cell transcriptomics and receptor sequencing reveal activation states and clonal signatures that characterize B cells in acute myeloid leukemia.
    Guo S; Mohan GS; Wang B; Li T; Daver N; Zhao Y; Reville PK; Hao D; Abbas HA
    J Immunother Cancer; 2024 Feb; 12(2):. PubMed ID: 38418394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation.
    Oellerich T; Mohr S; Corso J; Beck J; Döbele C; Braun H; Cremer A; Münch S; Wicht J; Oellerich MF; Bug G; Bohnenberger H; Perske C; Schütz E; Urlaub H; Serve H
    Blood; 2015 Mar; 125(12):1936-47. PubMed ID: 25605370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and validation of inferior prognostic genes associated with immune signatures and chemotherapy outcome in acute myeloid leukemia.
    Wang J; Hao JP; Uddin MN; Wu Y; Chen R; Li DF; Xiong DQ; Ding N; Yang JH; Ding XS
    Aging (Albany NY); 2021 Jun; 13(12):16445-16470. PubMed ID: 34148032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunosuppression and outcomes in adult patients with de novo acute myeloid leukemia with normal karyotypes.
    Ferraro F; Miller CA; Christensen KA; Helton NM; O'Laughlin M; Fronick CC; Fulton RS; Kohlschmidt J; Eisfeld AK; Bloomfield CD; Ramakrishnan SM; Day RB; Wartman LD; Uy GL; Welch JS; Christopher MJ; Heath SE; Baty JD; Schuelke MJ; Payton JE; Spencer DH; Rettig MP; Link DC; Walter MJ; Westervelt P; DiPersio JF; Ley TJ
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34845035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A clinical transcriptome approach to patient stratification and therapy selection in acute myeloid leukemia.
    Docking TR; Parker JDK; Jädersten M; Duns G; Chang L; Jiang J; Pilsworth JA; Swanson LA; Chan SK; Chiu R; Nip KM; Mar S; Mo A; Wang X; Martinez-Høyer S; Stubbins RJ; Mungall KL; Mungall AJ; Moore RA; Jones SJM; Birol İ; Marra MA; Hogge D; Karsan A
    Nat Commun; 2021 Apr; 12(1):2474. PubMed ID: 33931648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals RNA N6-methyladenosine modification associated with prognosis and drug resistance in acute myeloid leukemia.
    Li Z; Liu X; Wang L; Zhao H; Wang S; Yu G; Wu D; Chu J; Han J
    Front Immunol; 2023; 14():1281687. PubMed ID: 38022588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow-derived mesenchymal stem/stromal cells in patients with acute myeloid leukemia reveal transcriptome alterations and deficiency in cellular vitality.
    Zhang L; Chi Y; Wei Y; Zhang W; Wang F; Zhang L; Zou L; Song B; Zhao X; Han Z
    Stem Cell Res Ther; 2021 Jun; 12(1):365. PubMed ID: 34174939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nascent transcript and single-cell RNA-seq analysis defines the mechanism of action of the LSD1 inhibitor INCB059872 in myeloid leukemia.
    Johnston G; Ramsey HE; Liu Q; Wang J; Stengel KR; Sampathi S; Acharya P; Arrate M; Stubbs MC; Burn T; Savona MR; Hiebert SW
    Gene; 2020 Aug; 752():144758. PubMed ID: 32422235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel 85-Gene Expression Signature Predicts Unfavorable Prognosis in Acute Myeloid Leukemia.
    Lai Y; Sheng L; Wang J; Zhou M; OuYang G
    Technol Cancer Res Treat; 2021; 20():15330338211004933. PubMed ID: 33784904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-based molecular subtypes and differentiation hierarchies improve the classification framework of acute myeloid leukemia.
    Cheng WY; Li JF; Zhu YM; Lin XJ; Wen LJ; Zhang F; Zhang YL; Zhao M; Fang H; Wang SY; Lin XJ; Qiao N; Yin W; Zhang JN; Dai YT; Jiang L; Sun XJ; Xu Y; Zhang TT; Chen SN; Zhu HH; Chen Z; Jin J; Wu DP; Shen Y; Chen SJ
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2211429119. PubMed ID: 36442087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD34 expression predicts an adverse outcome in patients with NPM1-positive acute myeloid leukemia.
    Dang H; Chen Y; Kamel-Reid S; Brandwein J; Chang H
    Hum Pathol; 2013 Oct; 44(10):2038-46. PubMed ID: 23701943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways.
    Bakhtiyari M; Liaghat M; Aziziyan F; Shapourian H; Yahyazadeh S; Alipour M; Shahveh S; Maleki-Sheikhabadi F; Halimi H; Forghaniesfidvajani R; Zalpoor H; Nabi-Afjadi M; Pornour M
    Cell Commun Signal; 2023 Sep; 21(1):252. PubMed ID: 37735675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of FLT3 gene in acute myeloid leukemia with normal cytogenetics and its association with clinical and immunophenotypic features.
    Chauhan PS; Bhushan B; Mishra AK; Singh LC; Saluja S; Verma S; Gupta DK; Mittal V; Chaudhry S; Kapur S
    Med Oncol; 2011 Jun; 28(2):544-51. PubMed ID: 20354824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 70.