These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30827832)

  • 1. Snap-valve cerebral shunt design for intracranial pressure operation and ultrasound visualization.
    Mitchell SC; Grangard G; Kahouli W; Dalldorf C; Crain A; Lee E; Hamlin A; Feeney L; Johnstone H; Luke GP; Diamond SG; Bauer DF
    Med Eng Phys; 2019 Apr; 66():1-11. PubMed ID: 30827832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in intracranial pulse pressure amplitudes after shunt implantation and adjustment of shunt valve opening pressure in normal pressure hydrocephalus.
    Eide PK; Sorteberg W
    Acta Neurochir (Wien); 2008 Nov; 150(11):1141-7; discussion 1147. PubMed ID: 18936877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is there a reasonable differential indication for different hydrocephalus shunt systems?
    Trost HA
    Childs Nerv Syst; 1995 Apr; 11(4):189-92. PubMed ID: 7621478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paradoxical response of intracranial pressure to shunt valve setting adjustments.
    D'Antona L; Craven CL; Merchan MAJ; Thompson SD; Bremner F; Thorne L; Matharu MS; Watkins LD; Toma AK
    Acta Neurochir (Wien); 2020 Oct; 162(10):2451-2458. PubMed ID: 32583083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why valve opening pressure plays a relatively minor role in the postural ICP response to ventricular shunts in normal pressure hydrocephalus: modeling and implications.
    Cook SW; Bergsneider M
    Acta Neurochir Suppl; 2002; 81():15-7. PubMed ID: 12168289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventriculoperitoneal Shunt Drainage Increases With Gravity and Cerebrospinal Fluid Pressure Pulsations: Benchtop Model.
    Koueik J; Iskandar BJ; Yang Z; Kraemer MR; Armstrong S; Wakim V; Broman AT; Medow J; Luzzio C; Hsu DA
    Neurosurgery; 2021 Nov; 89(6):1141-1147. PubMed ID: 34528096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Delta Valve: a physiologic shunt system.
    Watson DA
    Childs Nerv Syst; 1994 May; 10(4):224-30. PubMed ID: 7923231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure compensation in shunt-dependent hydrocephalus with CSF shunt malfunction.
    Gilkes CE; Steers AJ; Minns RA
    Childs Nerv Syst; 2001 Jan; 17(1-2):52-7. PubMed ID: 11219624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the hydrocephalus shunt valve.
    Watts C; Keith HD
    Childs Brain; 1983; 10(4):217-28. PubMed ID: 6884124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrocephalus: the zero ICP ventricle shunt (ZIPS) to control gravity shunt flow. A clinical study in 56 patients.
    Foltz EL; Blanks J; Meyer R
    Childs Nerv Syst; 1994 Jan; 10(1):43-8. PubMed ID: 8194062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The baric probe: a novel long-term implantable intracranial pressure monitor with ultrasound-based interrogation.
    Limbrick DD; Lake S; Talcott M; Alexander B; Wight S; Willie JT; Richard WD; Genin GM; Leuthardt EC
    J Neurosurg Pediatr; 2012 Dec; 10(6):518-24. PubMed ID: 23020257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent use of a lumboperitoneal shunt with programmable valve and ventricular access device in the treatment of pseudotumor cerebri: review of 40 cases.
    Nadkarni TD; Rekate HL; Wallace D
    J Neurosurg Pediatr; 2008 Jul; 2(1):19-24. PubMed ID: 18590390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of anti-siphon devices in the treatment of pediatric hydrocephalus.
    Tokoro K; Chiba Y; Abe H; Tanaka N; Yamataki A; Kanno H
    Childs Nerv Syst; 1994 May; 10(4):236-8. PubMed ID: 7923233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus.
    McGirt MJ; Buck DW; Sciubba D; Woodworth GF; Carson B; Weingart J; Jallo G
    Childs Nerv Syst; 2007 Mar; 23(3):289-95. PubMed ID: 17106749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.