BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30827895)

  • 1. Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
    Li H; Natarajan A; Ezike J; Barrasa MI; Le Y; Feder ZA; Yang H; Ma C; Markoulaki S; Lodish HF
    Dev Cell; 2019 Apr; 49(1):118-129.e7. PubMed ID: 30827895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of Forkhead box M1 promotes erythropoiesis through increased proliferation of erythroid progenitors.
    Youn M; Wang N; LaVasseur C; Bibikova E; Kam S; Glader B; Sakamoto KM; Narla A
    Haematologica; 2017 May; 102(5):826-834. PubMed ID: 28154085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis.
    Dulmovits BM; Hom J; Narla A; Mohandas N; Blanc L
    Curr Opin Hematol; 2017 May; 24(3):159-166. PubMed ID: 28099275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors.
    Zhang L; Prak L; Rayon-Estrada V; Thiru P; Flygare J; Lim B; Lodish HF
    Nature; 2013 Jul; 499(7456):92-6. PubMed ID: 23748442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting Regulatory Mechanisms Using Mouse Fetal Liver-Derived Erythroid Cells.
    McIver SC; Hewitt KJ; Gao X; Mehta C; Zhang J; Bresnick EH
    Methods Mol Biol; 2018; 1698():67-89. PubMed ID: 29076084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210.
    Sarakul O; Vattanaviboon P; Tanaka Y; Fucharoen S; Abe Y; Svasti S; Umemura T
    Blood Cells Mol Dis; 2013 Aug; 51(2):98-103. PubMed ID: 23623309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yap1 promotes proliferation of transiently amplifying stress erythroid progenitors during erythroid regeneration.
    Hao S; Matsui Y; Lai ZC; Paulson RF
    Exp Hematol; 2019 Dec; 80():42-54.e4. PubMed ID: 31756359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche.
    Hao S; Xiang J; Wu DC; Fraser JW; Ruan B; Cai J; Patterson AD; Lai ZC; Paulson RF
    Blood Adv; 2019 Jul; 3(14):2205-2217. PubMed ID: 31324641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating Enhancer Mechanisms to Establish a Hierarchical Blood Development Program.
    Mehta C; Johnson KD; Gao X; Ong IM; Katsumura KR; McIver SC; Ranheim EA; Bresnick EH
    Cell Rep; 2017 Sep; 20(12):2966-2979. PubMed ID: 28930689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel way to induce erythroid progenitor self renewal: cooperation of c-Kit with the erythropoietin receptor.
    Wessely O; Bauer A; Quang CT; Deiner EM; von Lindern M; Mellitzer G; Steinlein P; Ghysdael J; Beug H
    Biol Chem; 1999 Feb; 380(2):187-202. PubMed ID: 10195426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Analysis of Erythroid Progenitors by Colony-Forming Assays.
    Palis J; Koniski A
    Methods Mol Biol; 2018; 1698():117-132. PubMed ID: 29076087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced expression of p21 in GPIIb-p21 transgenic mice induces abnormalities in the proliferation of erythroid and megakaryocyte progenitors and primitive hematopoietic cells.
    Albanese P; Chagraoui J; Charon M; Cocault L; Dusanter-Fourt I; Romeo PH; Uzan G
    Exp Hematol; 2002 Nov; 30(11):1263-72. PubMed ID: 12423679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking erythroid progenitor cells in times of need and times of plenty.
    Koury MJ
    Exp Hematol; 2016 Aug; 44(8):653-63. PubMed ID: 26646992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.
    Lee HY; Gao X; Barrasa MI; Li H; Elmes RR; Peters LL; Lodish HF
    Nature; 2015 Jun; 522(7557):474-7. PubMed ID: 25970251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary, self-renewing erythroid progenitors develop through activation of both tyrosine kinase and steroid hormone receptors.
    Steinlein P; Wessely O; Meyer S; Deiner EM; Hayman MJ; Beug H
    Curr Biol; 1995 Feb; 5(2):191-204. PubMed ID: 7538024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FACS and immunomagnetic isolation of early erythroid progenitor cells from mouse fetal liver.
    Braun TW; Kuoch MK; Khandros E; Li H
    STAR Protoc; 2022 Mar; 3(1):101070. PubMed ID: 35024628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population snapshots predict early haematopoietic and erythroid hierarchies.
    Tusi BK; Wolock SL; Weinreb C; Hwang Y; Hidalgo D; Zilionis R; Waisman A; Huh JR; Klein AM; Socolovsky M
    Nature; 2018 Mar; 555(7694):54-60. PubMed ID: 29466336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways.
    Shi J; Yuan B; Hu W; Lodish H
    Exp Hematol; 2016 Nov; 44(11):1044-1058.e5. PubMed ID: 27473563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal erythropoiesis and the pathophysiology of chronic anemia.
    Koury MJ
    Blood Rev; 2014 Mar; 28(2):49-66. PubMed ID: 24560123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation.
    Voorhees JL; Powell ND; Moldovan L; Mo X; Eubank TD; Marsh CB
    PLoS One; 2013; 8(10):e77935. PubMed ID: 24205034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.