These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30828357)

  • 1. Spatial referencing of chlorophyll fluorescence images for quantitative assessment of infection propagation in leaves demonstrated on the ice plant:
    Sekulska-Nalewajko J; Kornaś A; Gocławski J; Miszalski Z; Kuźniak E
    Plant Methods; 2019; 15():18. PubMed ID: 30828357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picturing pathogen infection in plants.
    Barón M; Pineda M; Pérez-Bueno ML
    Z Naturforsch C J Biosci; 2016 Sep; 71(9-10):355-368. PubMed ID: 27626766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf Gas Exchange and Chlorophyll a Fluorescence Imaging of Rice Leaves Infected with Monographella albescens.
    Tatagiba SD; DaMatta FM; Rodrigues FÁ
    Phytopathology; 2015 Feb; 105(2):180-8. PubMed ID: 25163009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Photosynthetic Behaviors by Simultaneous Measurements of Leaf Reflectance and Chlorophyll Fluorescence Analyses.
    Kohzuma K
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves.
    Buschmann C
    Photosynth Res; 2007 May; 92(2):261-71. PubMed ID: 17525834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis, chlorophyll fluorescence and photochemical reflectance index in photoinhibited leaves.
    Hikosaka K
    Funct Plant Biol; 2021 Jul; 48(8):815-826. PubMed ID: 33832552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum.
    Kuźniak E; Kornas A; Kaźmierczak A; Rozpądek P; Nosek M; Kocurek M; Zellnig G; Müller M; Miszalski Z
    Ann Bot; 2016 Jun; 117(7):1141-51. PubMed ID: 27091507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves.
    Lichtenthaler HK; Buschmann C; Döll M; Fietz HJ; Bach T; Kozel U; Meier D; Rahmsdorf U
    Photosynth Res; 1981 Jun; 2(2):115-41. PubMed ID: 24470202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurements.
    Wen D; Kuang Y; Zhou G
    Environ Sci Pollut Res Int; 2004; 11(3):165-70. PubMed ID: 15259699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage.
    Chaerle L; Hagenbeek D; De Bruyne E; Valcke R; Van Der Straeten D
    Plant Cell Physiol; 2004 Jul; 45(7):887-96. PubMed ID: 15295072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV; Ensminger I
    Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicolor fluorescence imaging of leaves--a useful tool for visualizing systemic viral infections in plants.
    Pineda M; Gáspár L; Morales F; Szigeti Z; Barón M
    Photochem Photobiol; 2008; 84(5):1048-60. PubMed ID: 18435702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended depth-of-focus imaging of chlorophyll fluorescence from intact leaves.
    Rolfe SA; Scholes JD
    Photosynth Res; 2002; 72(1):107-15. PubMed ID: 16228539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species.
    Lichtenthaler HK; Ac A; Marek MV; Kalina J; Urban O
    Plant Physiol Biochem; 2007 Aug; 45(8):577-88. PubMed ID: 17587589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing.
    Cen H; Weng H; Yao J; He M; Lv J; Hua S; Li H; He Y
    Front Plant Sci; 2017; 8():1509. PubMed ID: 28900440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves.
    Omasa K; Shimazaki K; Aiga I; Larcher W; Onoe M
    Plant Physiol; 1987 Jul; 84(3):748-52. PubMed ID: 16665515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Photoperiod on Necrosis Development, Photosynthetic Efficiency and 'Green Islands' Formation in
    Macioszek VK; Sobczak M; Skoczowski A; Oliwa J; Michlewska S; Gapińska M; Ciereszko I; Kononowicz AK
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of chlorophyll fluorescence within leaves using a modified PAM Fluorometer with a fiber-optic microprobe.
    Schreiber U; Kühl M; Klimant I; Reising H
    Photosynth Res; 1996 Jan; 47(1):103-9. PubMed ID: 24301712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The ontogenetic approach to chlorophyll fluorescence studies of plant photosynthetic apparatus under stressful conditions].
    Nesterenko TV; Tikhomirov AA
    Biofizika; 2005; 50(2):335-40. PubMed ID: 15856994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence.
    Guidi L; Mori S; Degl'Innocenti E; Pecchia S
    Plant Physiol Biochem; 2007; 45(10-11):851-7. PubMed ID: 17900916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.