These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30828658)

  • 1. Phonon confinement and size effect in Raman spectra of ZnO nanoparticles.
    Korepanov VI; Chan SY; Hsu HC; Hamaguchi HO
    Heliyon; 2019 Feb; 5(2):e01222. PubMed ID: 30828658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles.
    Yadav HK; Gupta V; Sreenivas K; Singh SP; Sundarakannan B; Katiyar RS
    Phys Rev Lett; 2006 Aug; 97(8):085502. PubMed ID: 17026314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers.
    Poborchii V; Groenen J; Geshev PI; Hattori J; Chang WH; Ishii H; Irisawa T; Maeda T
    Nanoscale; 2021 Jun; 13(21):9686-9697. PubMed ID: 34018526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon confinement in stressed silicon nanocluster.
    Sahoo S; Dhara S; Mahadevan S; Arora AK
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5604-7. PubMed ID: 19928273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: three-dimensional model for phonon confinement in small particles: quantitative bandshape analysis of size-dependent Raman spectra of nanodiamonds.
    Korepanov VI; Witek H; Okajima H; Ōsawa E; Hamaguchi HO
    J Chem Phys; 2014 Jan; 140(4):041107. PubMed ID: 25669498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon propagation scale and nanoscale order in vitreous silica from Raman spectroscopy.
    Korepanov VI
    J Phys Condens Matter; 2020 Jan; 32(5):055901. PubMed ID: 31627196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phonon confinement effect in two-dimensional nanocrystals of black phosphorus with anisotropic phonon dispersions.
    Lin T; Cong X; Lin ML; Liu XL; Tan PH
    Nanoscale; 2018 May; 10(18):8704-8711. PubMed ID: 29701212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Short-Range Correlation on the Phonon Confinement of a Single ZnO Nanowire.
    Shih PH; Wu SY
    Nanoscale Res Lett; 2017 Dec; 12(1):264. PubMed ID: 28395482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Nanocrystal Size Distribution using Raman Spectroscopy with a Multi-particle Phonon Confinement Model.
    Doğan İ; van de Sanden MC
    J Vis Exp; 2015 Aug; (102):e53026. PubMed ID: 26327524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-strain line-broadening analysis of anatase/brookite (TiO
    Kremenović A; Grujić-Brojčin M; Tomić N; Lazović V; Bajuk-Bogdanović D; Krstić J; Šćepanović M
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2022 Apr; 78(Pt 2):214-222. PubMed ID: 35411859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman scattering of InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces.
    Milekhin A; Yeryukov N; Toropov A; Dmitriev D; Sheremet E; Zahn DR
    Nanoscale Res Lett; 2012 Aug; 7(1):476. PubMed ID: 22916827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined acoustic phonon in CdSC(1-x)Se(x) nanoparticles in borosilicate glass.
    Gupta SK; Jha PK; Sahoo S; Arora AK; Azhniuk YM
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5541-4. PubMed ID: 19928260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-phonon coupling in CdSe nanocrystals from an atomistic phonon model.
    Kelley AM
    ACS Nano; 2011 Jun; 5(6):5254-62. PubMed ID: 21598957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Optical Phonon Confinement in the Infrared Dielectric Response of III-V Superlattices.
    Matson JR; Alam MN; Varnavides G; Sohr P; Knight S; Darakchieva V; Stokey M; Schubert M; Said A; Beechem T; Narang P; Law S; Caldwell JD
    Adv Mater; 2024 Jan; 36(3):e2305106. PubMed ID: 38039437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic Engineering of Phonons in Functional Oxide Heterostructures.
    Jeong SG; Seo A; Choi WS
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103403. PubMed ID: 35038232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition across a sharp interface: Data from Raman and Brillouin imaging spectroscopy.
    Caponi S; Fioretto D; Mattarelli M
    Data Brief; 2020 Dec; 33():106368. PubMed ID: 33088877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain evolution and confinement effect in InAs/AlAs short-period superlattices studied by Raman spectroscopy.
    Zhao Y; Lu K; Yao J; Ning J; Chen B; Lu H; Zheng C
    Sci Rep; 2023 Jan; 13(1):123. PubMed ID: 36599857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation.
    Zobeiri H; Hunter N; Wang R; Wang T; Wang X
    Adv Sci (Weinh); 2021 Jun; 8(12):2004712. PubMed ID: 34194932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Confined Optical Phonons in Exciton Generation in Spherical Quantum Dot.
    Singh R; Dutta M; Stroscio MA
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined Acoustic Phonons in Colloidal Nanorod Heterostructures Investigated by Nonresonant Raman Spectroscopy and Finite Elements Simulations.
    Miscuglio M; Lin ML; Di Stasio F; Tan PH; Krahne R
    Nano Lett; 2016 Dec; 16(12):7664-7670. PubMed ID: 27960519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.