These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
697 related articles for article (PubMed ID: 30828760)
1. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Wang C; Tan R; Li J; Zhang Z Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels. Wang C; Qian J; Wang K; Hua M; Liu Q; Hao N; You T; Huang X ACS Appl Mater Interfaces; 2015 Dec; 7(48):26865-73. PubMed ID: 26524349 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Wang S; Zhang Y; Pang G; Zhang Y; Guo S Anal Chem; 2017 Feb; 89(3):1704-1709. PubMed ID: 28208258 [TBL] [Abstract][Full Text] [Related]
4. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Wu H; Liu R; Kang X; Liang C; Lv L; Guo Z Mikrochim Acta; 2017 Dec; 185(1):27. PubMed ID: 29594393 [TBL] [Abstract][Full Text] [Related]
5. Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Wang C; Qian J; An K; Huang X; Zhao L; Liu Q; Hao N; Wang K Biosens Bioelectron; 2017 Mar; 89(Pt 2):802-809. PubMed ID: 27816583 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Wang C; Tan R; Chen D Talanta; 2018 May; 182():363-370. PubMed ID: 29501165 [TBL] [Abstract][Full Text] [Related]
7. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
8. A novel fluorescent strategy for Golgi protein 73 determination based on aptamer/nitrogen-doped graphene quantum dots/molybdenum disulfide @ reduced graphene oxide nanosheets. Liang J; Yan R; Chen C; Yao X; Guo F; Wu R; Zhou Z; Chen J; Li G Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun; 294():122538. PubMed ID: 36842207 [TBL] [Abstract][Full Text] [Related]
9. Amplified Fluorescent Aptasensor for Ochratoxin A Assay Based on Graphene Oxide and RecJ Zhao H; Xiong D; Yan Y; Ma C Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33113906 [TBL] [Abstract][Full Text] [Related]
10. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559 [TBL] [Abstract][Full Text] [Related]
11. Ratiometric fluorescence strategy for p53 gene assay by using nitrogen doped graphene quantum dots and berberine as fluorescence reporters. Su D; Li N; Liu Y; Wang M; Su X Anal Chim Acta; 2019 Nov; 1084():78-84. PubMed ID: 31519237 [TBL] [Abstract][Full Text] [Related]
12. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III. Liu R; Wu H; Lv L; Kang X; Cui C; Feng J; Guo Z Mikrochim Acta; 2018 Apr; 185(5):254. PubMed ID: 29656368 [TBL] [Abstract][Full Text] [Related]
13. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
14. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Liu M; Li X; Li B; Du J; Yang Z Mikrochim Acta; 2019 Dec; 187(1):46. PubMed ID: 31838593 [TBL] [Abstract][Full Text] [Related]
15. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Zhang J; Zhang X; Yang G; Chen J; Wang S Biosens Bioelectron; 2013 Mar; 41():704-9. PubMed ID: 23089328 [TBL] [Abstract][Full Text] [Related]
16. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Bonel L; Vidal JC; Duato P; Castillo JR Biosens Bioelectron; 2011 Mar; 26(7):3254-9. PubMed ID: 21256729 [TBL] [Abstract][Full Text] [Related]
17. Bionanosensor based on N-doped graphene quantum dots coupled with CoOOH nanosheets and their application for in vivo analysis of ascorbic acid. Wang C; Pan C; Wei Z; Wei X; Yang F; Mao L Anal Chim Acta; 2020 Mar; 1100():191-199. PubMed ID: 31987140 [TBL] [Abstract][Full Text] [Related]
18. Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Khonsari YN; Sun S Mikrochim Acta; 2018 Aug; 185(9):430. PubMed ID: 30143874 [TBL] [Abstract][Full Text] [Related]
19. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Chen J; Zhang X; Cai S; Wu D; Chen M; Wang S; Zhang J Biosens Bioelectron; 2014 Jul; 57():226-31. PubMed ID: 24590125 [TBL] [Abstract][Full Text] [Related]
20. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Wang B; Wu Y; Chen Y; Weng B; Xu L; Li C Biosens Bioelectron; 2016 Jul; 81():125-130. PubMed ID: 26938491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]