These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30828778)

  • 1. Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study.
    Sterba M; Aubin CÉ; Wagnac E; Fradet L; Arnoux PJ
    Med Biol Eng Comput; 2019 Jun; 57(6):1381-1392. PubMed ID: 30828778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions.
    Wagnac E; Arnoux PJ; Garo A; Aubin CE
    Med Biol Eng Comput; 2012 Sep; 50(9):903-15. PubMed ID: 22566121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injury mechanisms of the ligamentous cervical C2-C3 Functional Spinal Unit to complex loading modes: Finite Element study.
    Mustafy T; Moglo K; Adeeb S; El-Rich M
    J Mech Behav Biomed Mater; 2016 Jan; 53():384-396. PubMed ID: 26409229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of morphological variations on cervical spine segmental responses from inertial loading.
    John JD; Yoganandan N; Arun MWJ; Saravana Kumar G
    Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traumatic instability of the lumbar spine. A dynamic in vitro study of flexion-distraction injury.
    Neumann P; Nordwall A; Osvalder AL
    Spine (Phila Pa 1976); 1995 May; 20(10):1111-21. PubMed ID: 7638653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence prediction of injury and vibration on adjacent components of spine using finite element methods.
    Guo LX; Teo EC
    J Spinal Disord Tech; 2006 Apr; 19(2):118-24. PubMed ID: 16760786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc.
    Dooris AP; Goel VK; Grosland NM; Gilbertson LG; Wilder DG
    Spine (Phila Pa 1976); 2001 Mar; 26(6):E122-9. PubMed ID: 11246394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation of lumbar flexion shows shear of the facet capsular ligament.
    Claeson AA; Barocas VH
    Spine J; 2017 Jan; 17(1):109-119. PubMed ID: 27520078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study.
    Moglo KE; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):751-9. PubMed ID: 12957562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.
    Mustafy T; El-Rich M; Mesfar W; Moglo K
    J Biomech; 2014 Sep; 47(12):2891-903. PubMed ID: 25129167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Validated Finite Element Analysis of Facet Joint Stress in Degenerative Lumbar Scoliosis.
    Wang L; Zhang B; Chen S; Lu X; Li ZY; Guo Q
    World Neurosurg; 2016 Nov; 95():126-133. PubMed ID: 27521732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study.
    Naserkhaki S; Jaremko JL; El-Rich M
    J Biomech; 2016 Sep; 49(13):2909-2917. PubMed ID: 27448498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of spongiosa density on load bearing of the lumbar spine.A finite element analysis].
    Pitzen T; Matthis D; Müller-Storz H; Ritz R; Caspar W; Steudel WI
    Z Orthop Ihre Grenzgeb; 2000; 138(1):17-21. PubMed ID: 10730358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions.
    El-Rich M; Arnoux PJ; Wagnac E; Brunet C; Aubin CE
    J Biomech; 2009 Jun; 42(9):1252-62. PubMed ID: 19427640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine.
    Ellingson AM; Shaw MN; Giambini H; An KN
    Comput Methods Biomech Biomed Engin; 2016; 19(9):1009-18. PubMed ID: 26404463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit.
    Zander T; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2004; 49(1-2):27-32. PubMed ID: 15032495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.