BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 30828801)

  • 1. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine.
    Nahas MR; Stroopinsky D; Rosenblatt J; Cole L; Pyzer AR; Anastasiadou E; Sergeeva A; Ephraim A; Washington A; Orr S; McMasters M; Weinstock M; Jain S; Leaf RK; Ghiasuddin H; Rahimian M; Liegel J; Molldrem JJ; Slack F; Kufe D; Avigan D
    Br J Haematol; 2019 May; 185(4):679-690. PubMed ID: 30828801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes.
    Wong KK; Hassan R; Yaacob NS
    Front Oncol; 2021; 11():624742. PubMed ID: 33718188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PD-1 blockade potentially enhances adoptive cytotoxic T cell potency in a human acute myeloid leukaemia animal model.
    Deng R; Fan FY; Yi H; Liu F; He GC; Sun HP; Su Y
    Hematology; 2018 Dec; 23(10):740-746. PubMed ID: 29962321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emerging role of immune checkpoint based approaches in AML and MDS.
    Boddu P; Kantarjian H; Garcia-Manero G; Allison J; Sharma P; Daver N
    Leuk Lymphoma; 2018 Apr; 59(4):790-802. PubMed ID: 28679300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunological effects of hypomethylating agents.
    Lindblad KE; Goswami M; Hourigan CS; Oetjen KA
    Expert Rev Hematol; 2017 Aug; 10(8):745-752. PubMed ID: 28644756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia.
    Daher-Reyes GS; Merchan BM; Yee KWL
    Expert Opin Investig Drugs; 2019 Oct; 28(10):835-849. PubMed ID: 31510809
    [No Abstract]   [Full Text] [Related]  

  • 8. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation.
    Ørskov AD; Treppendahl MB; Skovbo A; Holm MS; Friis LS; Hokland M; Grønbæk K
    Oncotarget; 2015 Apr; 6(11):9612-26. PubMed ID: 25823822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple combination targeting methyltransferase, BCL-2, and PD-1 facilitates antileukemia responses in acute myeloid leukemia.
    Zeng Z; Maiti A; Herbrich S; Cai T; Cavazos A; Manzella T; Ma H; Hayes K; Matthews J; DiNardo CD; Daver NG; Konopleva MY
    Cancer; 2023 Feb; 129(4):531-540. PubMed ID: 36477735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugation of TLR7 Agonist Combined with Demethylation Treatment Improves Whole-Cell Tumor Vaccine Potency in Acute Myeloid Leukemia.
    Zhong G; Jin G; Zeng W; Yu C; Li Y; Zhou J; Zhang L; Yu L
    Int J Med Sci; 2020; 17(15):2346-2356. PubMed ID: 32922200
    [No Abstract]   [Full Text] [Related]  

  • 11. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial.
    Kantarjian HM; Roboz GJ; Kropf PL; Yee KWL; O'Connell CL; Tibes R; Walsh KJ; Podoltsev NA; Griffiths EA; Jabbour E; Garcia-Manero G; Rizzieri D; Stock W; Savona MR; Rosenblat TL; Berdeja JG; Ravandi F; Rock EP; Hao Y; Azab M; Issa JJ
    Lancet Oncol; 2017 Oct; 18(10):1317-1326. PubMed ID: 28844816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment and characterization of hypomethylating agent-resistant cell lines, MOLM/AZA-1 and MOLM/DEC-5.
    Hur EH; Jung SH; Goo BK; Moon J; Choi Y; Choi DR; Chung YJ; Lee JH
    Oncotarget; 2017 Feb; 8(7):11748-11762. PubMed ID: 28052028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia.
    Shah NJ; Najibi AJ; Shih TY; Mao AS; Sharda A; Scadden DT; Mooney DJ
    Nat Biomed Eng; 2020 Jan; 4(1):40-51. PubMed ID: 31937942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study.
    Issa JJ; Roboz G; Rizzieri D; Jabbour E; Stock W; O'Connell C; Yee K; Tibes R; Griffiths EA; Walsh K; Daver N; Chung W; Naim S; Taverna P; Oganesian A; Hao Y; Lowder JN; Azab M; Kantarjian H
    Lancet Oncol; 2015 Sep; 16(9):1099-1110. PubMed ID: 26296954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conventional chemotherapy or hypomethylating agents for older patients with acute myeloid leukaemia?
    Ferrara F
    Hematol Oncol; 2014 Mar; 32(1):1-9. PubMed ID: 23512815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: a systematic review of hypomethylating agents trials.
    Yun S; Vincelette ND; Abraham I; Robertson KD; Fernandez-Zapico ME; Patnaik MM
    Clin Epigenetics; 2016; 8():68. PubMed ID: 27307795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune Checkpoint Inhibitors in AML-A New Frontier.
    Thummalapalli R; Knaus HA; Gojo I; Zeidner JF
    Curr Cancer Drug Targets; 2020; 20(7):545-557. PubMed ID: 32316893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation hypomethylating agent SGI-110 primes acute myeloid leukemia cells to IAP antagonist by activating extrinsic and intrinsic apoptosis pathways.
    Dittmann J; Haydn T; Metzger P; Ward GA; Boerries M; Vogler M; Fulda S
    Cell Death Differ; 2020 Jun; 27(6):1878-1895. PubMed ID: 31831875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition.
    Raneros AB; Minguela A; Rodriguez RM; Colado E; Bernal T; Anguita E; Mogorron AV; Gil AC; Vidal-Castiñeira JR; Márquez-Kisinousky L; Bulnes PD; Marin AM; Garay MCG; Suarez-Alvarez B; Lopez-Larrea C
    Oncotarget; 2017 May; 8(19):31959-31976. PubMed ID: 28404876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel
    Zhang L; Du J; Song Q; Zhang C; Wu X
    J Immunol Res; 2022; 2022():1178874. PubMed ID: 35155685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.