These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30828836)

  • 41. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential impact of caveolae and caveolin-1 scaffolds on the membrane raft proteome.
    Zheng YZ; Boscher C; Inder KL; Fairbank M; Loo D; Hill MM; Nabi IR; Foster LJ
    Mol Cell Proteomics; 2011 Oct; 10(10):M110.007146. PubMed ID: 21753190
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The energetics of transmembrane helix insertion into a lipid bilayer.
    Chetwynd A; Wee CL; Hall BA; Sansom MS
    Biophys J; 2010 Oct; 99(8):2534-40. PubMed ID: 20959094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions of the EGFR juxtamembrane domain with PIP2-containing lipid bilayers: Insights from multiscale molecular dynamics simulations.
    Abd Halim KB; Koldsø H; Sansom MSP
    Biochim Biophys Acta; 2015 May; 1850(5):1017-1025. PubMed ID: 25219456
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae.
    Zimnicka AM; Husain YS; Shajahan AN; Sverdlov M; Chaga O; Chen Z; Toth PT; Klomp J; Karginov AV; Tiruppathi C; Malik AB; Minshall RD
    Mol Biol Cell; 2016 Jul; 27(13):2090-106. PubMed ID: 27170175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions of caveolin-1 scaffolding and intramembrane regions containing a CRAC motif with cholesterol in lipid bilayers.
    Yang G; Xu H; Li Z; Li F
    Biochim Biophys Acta; 2014 Oct; 1838(10):2588-99. PubMed ID: 24998359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease.
    Enyong EN; Gurley JM; De Ieso ML; Stamer WD; Elliott MH
    Prog Retin Eye Res; 2022 Nov; 91():101094. PubMed ID: 35729002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.
    Grabon A; Orłowski A; Tripathi A; Vuorio J; Javanainen M; Róg T; Lönnfors M; McDermott MI; Siebert G; Somerharju P; Vattulainen I; Bankaitis VA
    J Biol Chem; 2017 Sep; 292(35):14438-14455. PubMed ID: 28718450
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative study on the ability of two implicit solvent lipid models to predict transmembrane helix tilt angles.
    Frank A; Andricioaei I
    J Membr Biol; 2011 Jan; 239(1-2):57-62. PubMed ID: 21152910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations.
    Shen L; Bassolino D; Stouch T
    Biophys J; 1997 Jul; 73(1):3-20. PubMed ID: 9199766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tagging strategies strongly affect the fate of overexpressed caveolin-1.
    Han B; Tiwari A; Kenworthy AK
    Traffic; 2015 Apr; 16(4):417-38. PubMed ID: 25639341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anionic phospholipid interactions with the potassium channel KcsA: simulation studies.
    Deol SS; Domene C; Bond PJ; Sansom MS
    Biophys J; 2006 Feb; 90(3):822-30. PubMed ID: 16272446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.
    Janosi L; Gorfe A
    Biophys J; 2010 Nov; 99(9):2957-66. PubMed ID: 21044593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers.
    Monje-Galvan V; Warburton L; Klauda JB
    Methods Mol Biol; 2019; 1949():325-339. PubMed ID: 30790265
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptable Lipid Matrix Promotes Protein-Protein Association in Membranes.
    Kuznetsov AS; Polyansky AA; Fleck M; Volynsky PE; Efremov RG
    J Chem Theory Comput; 2015 Sep; 11(9):4415-26. PubMed ID: 26575933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular dynamics (MD) investigations of preformed structures of the transmembrane domain of the oncogenic Neu receptor dimer in a DMPC bilayer.
    Aller P; Voiry L; Garnier N; Genest M
    Biopolymers; 2005 Mar; 77(4):184-97. PubMed ID: 15660449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of Human β Defensin Type 3 (hBD-3) with Different PIP2-Containing Membranes, a Molecular Dynamics Simulation Study.
    Zhang L
    J Chem Inf Model; 2021 Sep; 61(9):4670-4686. PubMed ID: 34473496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer.
    Hung HM; Nguyen VP; Ngo ST; Nguyen MT
    Biophys Chem; 2016 Oct; 217():1-7. PubMed ID: 27455027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues.
    Vanni S; Vamparys L; Gautier R; Drin G; Etchebest C; Fuchs PF; Antonny B
    Biophys J; 2013 Feb; 104(3):575-84. PubMed ID: 23442908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
    Schow EV; Freites JA; Myint PC; Bernsel A; von Heijne G; White SH; Tobias DJ
    J Membr Biol; 2011 Jan; 239(1-2):35-48. PubMed ID: 21127848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.