BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30828839)

  • 1. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations.
    Nishimura Y; Nakai H
    J Comput Chem; 2018 Jan; 39(2):105-116. PubMed ID: 29047123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional tight binding-based free energy simulations in the DFTB+ program.
    Mitchell I; Aradi B; Page AJ
    J Comput Chem; 2018 Nov; 39(29):2452-2458. PubMed ID: 30238475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Large-Scale Excited-State Calculations Based on the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Ono J; Nishimura Y; Nakai H
    J Chem Theory Comput; 2019 Mar; 15(3):1719-1727. PubMed ID: 30673283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations.
    Uratani H; Nakai H
    J Chem Phys; 2020 Jun; 152(22):224109. PubMed ID: 32534554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery.
    Chou CP; Sakti AW; Nishimura Y; Nakai H
    Chem Rec; 2019 Apr; 19(4):746-757. PubMed ID: 30462370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divide-and-Conquer-Type Density-Functional Tight-Binding Molecular Dynamics Simulations of Proton Diffusion in a Bulk Water System.
    Nakai H; Sakti AW; Nishimura Y
    J Phys Chem B; 2016 Jan; 120(1):217-21. PubMed ID: 26694784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPU-Enhanced DFTB Metadynamics for Efficiently Predicting Free Energies of Biochemical Systems.
    Kumar A; Arantes PR; Saha A; Palermo G; Wong BM
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Nishimura Y; Nakai H
    J Chem Theory Comput; 2020 Apr; 16(4):2369-2378. PubMed ID: 32074445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water.
    Sakti AW; Nishimura Y; Nakai H
    J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid QM/MM approach for biomolecular systems under periodic boundary conditions: Combination of the density-functional tight-binding theory and particle mesh Ewald method.
    Nishizawa H; Okumura H
    J Comput Chem; 2016 Dec; 37(31):2701-2711. PubMed ID: 27718264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-Mechanical Molecular Dynamics Simulations on Secondary Proton Transfer in Bacteriorhodopsin Using Realistic Models.
    Nakai H; Takemura T; Ono J; Nishimura Y
    J Phys Chem B; 2021 Oct; 125(39):10947-10963. PubMed ID: 34582194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutral gold clusters studied by the isothermal Brownian-type molecular dynamics and metadynamics molecular dynamics simulations.
    Lai SK; Lim CC
    J Comput Chem; 2021 Feb; 42(5):310-325. PubMed ID: 33336370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.