These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30829319)

  • 41. Low current heaterless hollow cathode neutralizer for plasma propulsion-Development overview.
    Lev D; Alon G; Appel L
    Rev Sci Instrum; 2019 Nov; 90(11):113303. PubMed ID: 31779442
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrospray ionization enters the final frontier: Mass spectrometry's role in understanding electrospray thrusters and their plumes.
    Patrick AL
    Rapid Commun Mass Spectrom; 2020 Feb; 34(3):e8587. PubMed ID: 31509305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Submarines, spacecraft and exhaled breath.
    Pleil JD; Hansel A
    J Breath Res; 2012 Mar; 6(1):019001. PubMed ID: 22366644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography.
    Elias PQ; Jarrige J; Cucchetti E; Cannat F; Packan D
    Rev Sci Instrum; 2017 Sep; 88(9):093511. PubMed ID: 28964238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study on inversion method of wall erosion information of on-orbit Hall thruster based on low-frequency oscillation signals and neural networks.
    Han K; Xie F; Wang Y; Zhang L; Yu M; Wang J; Wang Y; Wan J
    Heliyon; 2022 Nov; 8(11):e11616. PubMed ID: 36458315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A propellant-free superconducting solenoid thruster driven by geomagnetic field.
    Kuo HW; Pan KL; Lee WL
    J Adv Res; 2021 Feb; 28():269-275. PubMed ID: 33364062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual-axis thrust stand for the direct characterization of electrospray performance.
    Gilpin MR; McGehee WA; Arnold NI; Natisin MR; Holley ZA
    Rev Sci Instrum; 2022 Jun; 93(6):065102. PubMed ID: 35778016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrodynamic Analysis-Based Modeling and Experimental Verification of a New Water-Jet Thruster for an Amphibious Spherical Robot.
    Hou X; Guo S; Shi L; Xing H; Liu Y; Liu H; Hu Y; Xia D; Li Z
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.
    Bundesmann C; Tartz M; Scholze F; Leiter HJ; Scortecci F; Gnizdor RY; Neumann H
    Rev Sci Instrum; 2010 Apr; 81(4):046106. PubMed ID: 20441379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extremely small-diameter, high-density, radio frequency, plasma sources and central gas feeding for next-generation electrodeless plasma thrusters.
    Shinohara S; Kuwahara D; Ishigami Y; Horita H; Nakanishi S
    Rev Sci Instrum; 2020 Jul; 91(7):073507. PubMed ID: 32752823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sub-micro-Newton resolution thrust balance.
    Hathaway G
    Rev Sci Instrum; 2015 Oct; 86(10):105116. PubMed ID: 26520993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inline screw feeding vacuum arc thruster.
    Kronhaus I; Laterza M; Maor Y
    Rev Sci Instrum; 2017 Apr; 88(4):043505. PubMed ID: 28456244
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kr II laser-induced fluorescence for measuring plasma acceleration.
    Hargus WA; Azarnia GM; Nakles MR
    Rev Sci Instrum; 2012 Oct; 83(10):103111. PubMed ID: 23126755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.
    Dannenmayer K; Mazouffre S
    Rev Sci Instrum; 2012 Dec; 83(12):123503. PubMed ID: 23277983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-invasive Hall current distribution measurement in a Hall effect thruster.
    Mullins CR; Farnell CC; Farnell CC; Martinez RA; Liu D; Branam RD; Williams JD
    Rev Sci Instrum; 2017 Jan; 88(1):013507. PubMed ID: 28147644
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel underwater piezoelectric thruster with one single resonance mode.
    Li X; Chen D; Jin J; Wang L
    Rev Sci Instrum; 2019 Apr; 90(4):045007. PubMed ID: 31043042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plume influence analysis of small bipropellant thruster on solar array of GEO satellite.
    Lee KH
    PLoS One; 2018; 13(9):e0199667. PubMed ID: 30180165
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A compound pendulum for thrust measurement of micro-Newton thruster.
    Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q
    Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.