These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30829357)

  • 1. Role of suppressed oxygen vacancies in the BiFeO
    Sasmal A; Sen S; Devi PS
    Phys Chem Chem Phys; 2019 Mar; 21(11):5974-5988. PubMed ID: 30829357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxylated BiFeO
    Sasmal A; Patra A; Devi PS; Sen S
    Dalton Trans; 2021 Feb; 50(5):1824-1837. PubMed ID: 33465216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency dependent energy storage and dielectric performance of Ba-Zr Co-doped BiFeO
    Sasmal A; Sen S; Devi PS
    Soft Matter; 2020 Sep; 16(36):8492-8505. PubMed ID: 32832966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced dielectric, ferroelectric, energy storage and mechanical energy harvesting performance of ZnO-PVDF composites induced by MWCNTs as an additive third phase.
    Pratihar S; Patra A; Sasmal A; Medda SK; Sen S
    Soft Matter; 2021 Sep; 17(37):8483-8495. PubMed ID: 34586137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Metal-Organic Framework Incorporated Highly Polar PVDF for Dielectric Energy Storage and Mechanical Energy Harvesting.
    Sasmal A; Senthilnathan J; Arockiarajan A; Yoshimura M
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced piezoelectric response in BTO NWs-PVDF composite through tuning of polar phase content.
    Hazra S; Ghatak A; Ghosh A; Sengupta S; Raychaudhuri AK; Ghosh B
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36301677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester.
    Karan SK; Mandal D; Khatua BB
    Nanoscale; 2015 Jun; 7(24):10655-66. PubMed ID: 26030744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films.
    Yoon S; Shin DJ; Ko YH; Cho KH; Koh JH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1289-1294. PubMed ID: 30469177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable Self-Powered Piezoelectric Nanogenerator and Self-Charging Photo-Power Pack Using In Situ Formed Multifunctional Calcium Phosphate Nanorod-Doped PVDF Films.
    Biswas P; Hoque NA; Thakur P; Saikh MM; Roy S; Khatun F; Bagchi B; Das S
    Langmuir; 2019 Dec; 35(52):17016-17026. PubMed ID: 31815478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-ZnO decorated ZnSnO
    Sasmal A; Medda SK; Devi PS; Sen S
    Nanoscale; 2020 Oct; 12(40):20908-20921. PubMed ID: 33091096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precipitation-Printed High-β Phase Poly(vinylidene fluoride) for Energy Harvesting.
    Tu R; Sprague E; Sodano HA
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58072-58081. PubMed ID: 33320534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide.
    Bhavanasi V; Kumar V; Parida K; Wang J; Lee PS
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):521-9. PubMed ID: 26693844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator.
    Garain S; Sinha TK; Adhikary P; Henkel K; Sen S; Ram S; Sinha C; Schmeißer D; Mandal D
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1298-307. PubMed ID: 25523039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(vinylidene fluoride)/NH2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor.
    Cho S; Lee JS; Jang J
    ACS Appl Mater Interfaces; 2015 May; 7(18):9668-81. PubMed ID: 25936367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability.
    Roy S; Thakur P; Hoque NA; Bagchi B; Sepay N; Khatun F; Kool A; Das S
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24198-24209. PubMed ID: 28654268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halide Tunablility Leads to Enhanced Biomechanical Energy Harvesting in Lead-Free Cs
    Paul T; Sahoo A; Maiti S; Gavali DS; Thapa R; Banerjee R
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34726-34741. PubMed ID: 37440167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic surfactant assisted enhancement of dielectric and piezoelectric properties of PVDF nanofibers for energy harvesting application.
    Ekbote GS; Khalifa M; Mahendran A; Anandhan S
    Soft Matter; 2021 Mar; 17(8):2215-2222. PubMed ID: 33464271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer Peptide-PVDF Composite Films for High-Performance Energy Harvesting.
    Patranabish S; Dhawan S; Haridas V; Sinha A
    Macromol Rapid Commun; 2022 Dec; 43(23):e2200493. PubMed ID: 35866581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties.
    Kumar GS; Vishnupriya D; Chary KS; Patro TU
    Nanotechnology; 2016 Sep; 27(38):385702. PubMed ID: 27513068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic liquid modified PVDF/BCZT nanocomposites for space charge induced mechanical energy harvesting performance.
    Maiti P; Sasmal A; Arockiarajan A; Mitra R
    Nanotechnology; 2024 Mar; 35(24):. PubMed ID: 38467060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.