These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30829365)

  • 21. Hierarchically Designed Cathodes Composed of Vanadium Hexacyanoferrate@Copper Hexacyanoferrate with Enhanced Cycling Stability.
    Choi TU; Baek G; Lee SG; Lee JH
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24817-24826. PubMed ID: 32367707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal Azolate/Carboxylate Frameworks as Catalysts in Oxidative and C-C Coupling Reactions.
    Tăbăcaru A; Xhaferaj N; Martins LM; Alegria EC; Chay RS; Giacobbe C; Domasevitch KV; Pombeiro AJ; Galli S; Pettinari C
    Inorg Chem; 2016 Jun; 55(12):5804-17. PubMed ID: 27266480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape-Controlled Synthesis of Metal-Organic Frameworks with Adjustable Fenton-Like Catalytic Activity.
    Liu J; Li X; Liu B; Zhao C; Kuang Z; Hu R; Liu B; Ao Z; Wang J
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38051-38056. PubMed ID: 30360089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn).
    Kaye SS; Long JR
    J Am Chem Soc; 2005 May; 127(18):6506-7. PubMed ID: 15869251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hotspots analysis and perspectives of Prussian blue analogues (PBAs) in environment and energy in recent 20 years by CiteSpace.
    Du X; Hou Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11141-11174. PubMed ID: 36508097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the Fe/Co ratio towards a bimetallic Prussian blue analogue for the ultrasensitive electrochemical sensing of 5-hydroxytryptamine.
    Feng H; Wang F; Li J; Wu Q; Cui Y; He L; Liu X; Liu Z; Qian D; Tong H
    Talanta; 2023 Mar; 254():124138. PubMed ID: 36463803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.
    Zou R; Li PZ; Zeng YF; Liu J; Zhao R; Duan H; Luo Z; Wang JG; Zou R; Zhao Y
    Small; 2016 May; 12(17):2334-43. PubMed ID: 26900671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscopic understanding of negative magnetization in Cu, Mn, and Fe based Prussian blue analogues.
    Kumar A; Yusuf SM; Keller L; Yakhmi JV
    Phys Rev Lett; 2008 Nov; 101(20):207206. PubMed ID: 19113377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploration of glassy state in Prussian blue analogues.
    Ma N; Ohtani R; Le HM; Sørensen SS; Ishikawa R; Kawata S; Bureekaew S; Kosasang S; Kawazoe Y; Ohara K; Smedskjaer MM; Horike S
    Nat Commun; 2022 Jul; 13(1):4023. PubMed ID: 35821027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational Synthesis of Hollow Prussian Blue Analogue Through Coordination Replication and Controlled-Etching for Cs-Ion Removal.
    Xu J; Bu FX; Guo YF; Zhang W; Hu M; Jiang JS
    J Nanosci Nanotechnol; 2018 May; 18(5):3230-3238. PubMed ID: 29442823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core-shell Prussian blue analogues@ poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of Rhodamine B with reduced metal leaching.
    Zeng L; Xiao L; Shi X; Wei M; Cao J; Long Y
    J Colloid Interface Sci; 2019 Jan; 534():586-594. PubMed ID: 30265986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future.
    Peng J; Zhang W; Liu Q; Wang J; Chou S; Liu H; Dou S
    Adv Mater; 2022 Apr; 34(15):e2108384. PubMed ID: 34918850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolving the Seeming Contradiction between the Superior Rate Capability of Prussian Blue Analogues and the Extremely Slow Ionic Diffusion.
    Komayko AI; Arkharova NA; Presnov DE; Levin EE; Nikitina VA
    J Phys Chem Lett; 2022 Apr; 13(14):3165-3172. PubMed ID: 35373560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compositional dependence of negative thermal expansion in the Prussian Blue analogues M(II)Pt(IV)(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd).
    Chapman KW; Chupas PJ; Kepert CJ
    J Am Chem Soc; 2006 May; 128(21):7009-14. PubMed ID: 16719481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the Electronic Properties of Prussian Blue Analogues for Efficient Water Oxidation Electrocatalysis: Experimental and Computational Studies.
    Alsaç EP; Ülker E; Nune SVK; Dede Y; Karadas F
    Chemistry; 2018 Apr; 24(19):4856-4863. PubMed ID: 29105180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Fixation of CO
    Dutta G; Jana AK; Natarajan S
    Chem Asian J; 2018 Jan; 13(1):66-72. PubMed ID: 29063717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interesting copper(ii)-assisted transformations of 2-acetylpyridine and 2-benzoylpyridine.
    Kitos AA; Efthymiou CG; Manos MJ; Tasiopoulos AJ; Nastopoulos V; Escuer A; Perlepes SP
    Dalton Trans; 2016 Jan; 45(3):1063-77. PubMed ID: 26659333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and thermodynamic study of transition metal ion (Mn²⁺, Co²⁺, Cu²⁺, and Zn²⁺) exchanged zeolites A and Y.
    Wu L; Navrotsky A
    Phys Chem Chem Phys; 2016 Apr; 18(15):10116-22. PubMed ID: 27009783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.