These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30829468)

  • 21. Ozonation of drinking water: part I. Oxidation kinetics and product formation.
    von Gunten U
    Water Res; 2003 Apr; 37(7):1443-67. PubMed ID: 12600374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways.
    Li C; Zheng S; Li T; Chen J; Zhou J; Su L; Zhang YN; Crittenden JC; Zhu S; Zhao Y
    Water Res; 2019 Mar; 151():468-477. PubMed ID: 30640160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction Dynamics of O((3)P) + Propyne: II. Primary Products, Branching Ratios, and Role of Intersystem Crossing from Ab Initio Coupled Triplet/Singlet Potential Energy Surfaces and Statistical Calculations.
    Gimondi I; Cavallotti C; Vanuzzo G; Balucani N; Casavecchia P
    J Phys Chem A; 2016 Jul; 120(27):4619-33. PubMed ID: 27010914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction Dynamics of O((3)P) + Propyne: I. Primary Products, Branching Ratios, and Role of Intersystem Crossing from Crossed Molecular Beam Experiments.
    Vanuzzo G; Balucani N; Leonori F; Stranges D; Nevrly V; Falcinelli S; Bergeat A; Casavecchia P; Cavallotti C
    J Phys Chem A; 2016 Jul; 120(27):4603-18. PubMed ID: 27046287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the reaction rate constants of micropollutants with hydroxyl radicals in water using QSPR modeling.
    Jin X; Peldszus S; Huck PM
    Chemosphere; 2015 Nov; 138():1-9. PubMed ID: 26005810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of precision of molecular orbital descriptors on toxicity modeling of selected pyridines.
    Seward JR; Cronin MT; Schultz TW
    SAR QSAR Environ Res; 2002 Mar; 13(2):325-40. PubMed ID: 12071659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaction dynamics of methane with F, O, Cl, and Br on ab initio potential energy surfaces.
    Czakó G; Bowman JM
    J Phys Chem A; 2014 Apr; 118(16):2839-64. PubMed ID: 24597939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.
    Minakata D; Crittenden J
    Environ Sci Technol; 2011 Apr; 45(8):3479-86. PubMed ID: 21410278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calculation of chemical reaction rate constants using on-the-fly high level electronic structure computations with account of multidimensional tunneling.
    Kryvohuz M
    J Chem Phys; 2012 Dec; 137(23):234304. PubMed ID: 23267483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor.
    Carl SA; Nguyen HM; Elsamra RM; Nguyen MT; Peeters J
    J Chem Phys; 2005 Mar; 122(11):114307. PubMed ID: 15836215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO*) reaction rate constants.
    Minakata D; Li K; Westerhoff P; Crittenden J
    Environ Sci Technol; 2009 Aug; 43(16):6220-7. PubMed ID: 19746717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ab Initio/Transition-State Theory Study of the Reactions of Ċ
    Sun Y; Zhou CW; Somers KP; Curran HJ
    J Phys Chem A; 2019 Oct; 123(42):9019-9052. PubMed ID: 31566374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors.
    Fernandez-Fontaina E; Carballa M; Omil F; Lema JM
    Water Res; 2014 Nov; 65():371-83. PubMed ID: 25150522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of reaction mechanism for OH radical-mediated phenol oxidation using quantum chemical calculation.
    Dwinandha D; Zhang B; Fujii M
    Chemosphere; 2022 Mar; 291(Pt 2):132763. PubMed ID: 34740699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach.
    Jin X; Peldszus S
    Sci Total Environ; 2012 Jan; 414():653-63. PubMed ID: 22142647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment.
    Heeb MB; Kristiana I; Trogolo D; Arey JS; von Gunten U
    Water Res; 2017 Mar; 110():91-101. PubMed ID: 27998787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactivity of nitrogen species with inorganic and organic compounds in water.
    Sharma VK; Manoli K; Ma X
    Chemosphere; 2022 Sep; 302():134911. PubMed ID: 35561761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase: A single-descriptor based QSAR and DFT study.
    Yang Z; Luo S; Wei Z; Ye T; Spinney R; Chen D; Xiao R
    Environ Pollut; 2016 Apr; 211():157-64. PubMed ID: 26748251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSARs to predict adsorption affinity of organic micropollutants for activated carbon and β-cyclodextrin polymer adsorbents.
    Ling Y; Klemes MJ; Steinschneider S; Dichtel WR; Helbling DE
    Water Res; 2019 May; 154():217-226. PubMed ID: 30798176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.