These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 30830379)
1. The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Casu F; Pinu FR; Stefanello E; Greenwood DR; Villas-Bôas SG Metabolomics; 2018 Jul; 14(8):103. PubMed ID: 30830379 [TBL] [Abstract][Full Text] [Related]
2. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts. Pinu FR; Villas-Boas SG; Martin D Food Res Int; 2019 Jul; 121():835-844. PubMed ID: 31108815 [TBL] [Abstract][Full Text] [Related]
3. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. Yang S; Tschaplinski TJ; Engle NL; Carroll SL; Martin SL; Davison BH; Palumbo AV; Rodriguez M; Brown SD BMC Genomics; 2009 Jan; 10():34. PubMed ID: 19154596 [TBL] [Abstract][Full Text] [Related]
5. The effect of linoleic acid on the Sauvignon blanc fermentation by different wine yeast strains. Casu F; Pinu FR; Fedrizzi B; Greenwood DR; Villas-Boas SG FEMS Yeast Res; 2016 Aug; 16(5):. PubMed ID: 27364827 [TBL] [Abstract][Full Text] [Related]
6. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. Imura M; Iwakiri R; Bamba T; Fukusaki E J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822 [TBL] [Abstract][Full Text] [Related]
7. Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Duncan JD; Devillers H; Camarasa C; Setati ME; Divol B Food Microbiol; 2024 Dec; 124():104624. PubMed ID: 39244375 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Kim S; Kim J; Song JH; Jung YH; Choi IS; Choi W; Park YC; Seo JH; Kim KH Biotechnol J; 2016 Sep; 11(9):1221-9. PubMed ID: 27313052 [TBL] [Abstract][Full Text] [Related]
9. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Li H; Ma ML; Luo S; Zhang RM; Han P; Hu W Int J Biochem Cell Biol; 2012 Jul; 44(7):1087-96. PubMed ID: 22504284 [TBL] [Abstract][Full Text] [Related]
10. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788 [TBL] [Abstract][Full Text] [Related]
11. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747 [TBL] [Abstract][Full Text] [Related]
12. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. Jouhten P; Rintala E; Huuskonen A; Tamminen A; Toivari M; Wiebe M; Ruohonen L; Penttilä M; Maaheimo H BMC Syst Biol; 2008 Jul; 2():60. PubMed ID: 18613954 [TBL] [Abstract][Full Text] [Related]
14. Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Yu S; Jeppsson H; Hahn-Hägerdal B Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):314-20. PubMed ID: 8597536 [TBL] [Abstract][Full Text] [Related]
15. Metabolic responses of Saccharomyces cerevisiae to ethanol stress using gas chromatography-mass spectrometry. Ming M; Wang X; Lian L; Zhang H; Gao W; Zhu B; Lou D Mol Omics; 2019 Jun; 15(3):216-221. PubMed ID: 31066408 [TBL] [Abstract][Full Text] [Related]
16. Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae. Sincak M; Turker M; Derman ÜC; Erdem A; Jandacka P; Luptak M; Luptakova A; Sedlakova-Kadukova J Sci Rep; 2024 Jun; 14(1):12869. PubMed ID: 38834614 [TBL] [Abstract][Full Text] [Related]
17. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Woo JM; Yang KM; Kim SU; Blank LM; Park JB Appl Microbiol Biotechnol; 2014 Jul; 98(13):6085-94. PubMed ID: 24706214 [TBL] [Abstract][Full Text] [Related]
19. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. Matsushika A; Nagashima A; Goshima T; Hoshino T PLoS One; 2013; 8(7):e69005. PubMed ID: 23874849 [TBL] [Abstract][Full Text] [Related]
20. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]