These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30830408)
1. High-resolution mass spectrometry metabolomics of grape chemical markers to reveal use of not-allowed varieties in the production of Amarone and Recioto wines. De Rosso M; Mayr CM; Girardi G; Vedova AD; Flamini R Metabolomics; 2018 Sep; 14(10):124. PubMed ID: 30830408 [TBL] [Abstract][Full Text] [Related]
2. Effects of Traditional and Modern Post-Harvest Withering Processes on the Composition of the Tomasi D; Lonardi A; Boscaro D; Nardi T; Marangon CM; De Rosso M; Flamini R; Lovat L; Mian G Molecules; 2021 Aug; 26(17):. PubMed ID: 34500632 [TBL] [Abstract][Full Text] [Related]
3. Changes in grape polyphenols (V. vinifera L.) as a consequence of post-harvest withering by high-resolution mass spectrometry: Raboso Piave versus Corvina. Rosso MD; Soligo S; Panighel A; Carraro R; Vedova AD; Maoz I; Tomasi D; Flamini R J Mass Spectrom; 2016 Sep; 51(9):750-60. PubMed ID: 27491020 [TBL] [Abstract][Full Text] [Related]
4. Management of postharvest grape withering to optimise the aroma of the final wine: A case study on Amarone. Bellincontro A; Matarese F; D'Onofrio C; Accordini D; Tosi E; Mencarelli F Food Chem; 2016 Dec; 213():378-387. PubMed ID: 27451194 [TBL] [Abstract][Full Text] [Related]
5. Removal of ochratoxin A from contaminated red wines by repassage over grape pomaces. Solfrizzo M; Avantaggiato G; Panzarini G; Visconti A J Agric Food Chem; 2010 Jan; 58(1):317-23. PubMed ID: 19919032 [TBL] [Abstract][Full Text] [Related]
6. Study of Glycosidically Bound Volatile Precursors as Variety Markers to Reveal Not-Allowed Practices in White Wines Winemaking. Panighel A; De Rosso M; Mazzei AR; Fugaro M; De Marchi F; Flamini R J Agric Food Chem; 2024 Jan; 72(4):1949-1958. PubMed ID: 37172217 [TBL] [Abstract][Full Text] [Related]
7. Metabolomic profiling of different clones of vitis vinifera L. cv. "Glera" and "Glera lunga" grapes by high-resolution mass spectrometry. Gardiman M; De Rosso M; De Marchi F; Flamini R Metabolomics; 2023 Mar; 19(4):25. PubMed ID: 36976385 [TBL] [Abstract][Full Text] [Related]
8. Classification of wine grape biotypes according to their variety and sanitary condition by fingerprinting untargeted analysis. Crupi P; Gasparro M; Caputo AR Nat Prod Res; 2021 Feb; 35(4):659-663. PubMed ID: 30887845 [TBL] [Abstract][Full Text] [Related]
9. Resveratrol content of some wines obtained from dried Valpolicella grapes: Recioto and Amarone. Celotti E; Ferrarini R; Zironi R; Conte LS J Chromatogr A; 1996 Apr; 730(1-2):47-52. PubMed ID: 8680595 [TBL] [Abstract][Full Text] [Related]
10. Analysis of carotenoids in grapes to predict norisoprenoid varietal aroma of wines from Apulia. Crupi P; Coletta A; Antonacci D J Agric Food Chem; 2010 Sep; 58(17):9647-56. PubMed ID: 20695424 [TBL] [Abstract][Full Text] [Related]
11. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes. Barnaba C; Dellacassa E; Nicolini G; Giacomelli M; Roman Villegas T; Nardin T; Larcher R Food Res Int; 2017 Aug; 98():20-33. PubMed ID: 28610729 [TBL] [Abstract][Full Text] [Related]
12. Volatile Compounds in Monovarietal Wines of Two Amarone Della Valpolicella Terroirs: Chemical and Sensory Impact of Grape Variety and Origin, Yeast Strain and Spontaneous Fermentation. Luzzini G; Slaghenaufi D; Ugliano M Foods; 2021 Oct; 10(10):. PubMed ID: 34681523 [TBL] [Abstract][Full Text] [Related]
13. Core Microbiota and Metabolome of Stefanini I; Carlin S; Tocci N; Albanese D; Donati C; Franceschi P; Paris M; Zenato A; Tempesta S; Bronzato A; Vrhovsek U; Mattivi F; Cavalieri D Front Microbiol; 2017; 8():457. PubMed ID: 28377754 [TBL] [Abstract][Full Text] [Related]
14. Juice Index: an integrated Sauvignon blanc grape and wine metabolomics database shows mainly seasonal differences. Pinu FR; Tumanov S; Grose C; Raw V; Albright A; Stuart L; Villas-Boas SG; Martin D; Harker R; Greven M Metabolomics; 2019 Jan; 15(1):3. PubMed ID: 30830411 [TBL] [Abstract][Full Text] [Related]
15. Distribution of crown hexameric procyanidin and its tetrameric and pentameric congeners in red and white wines. Longo E; Rossetti F; Jouin A; Teissedre PL; Jourdes M; Boselli E Food Chem; 2019 Nov; 299():125125. PubMed ID: 31299515 [TBL] [Abstract][Full Text] [Related]
16. Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. Dall'Asta C; Cirlini M; Morini E; Galaverna G J Chromatogr A; 2011 Oct; 1218(42):7557-65. PubMed ID: 21917263 [TBL] [Abstract][Full Text] [Related]
17. Wine and grape marc spirits metabolomics. Diamantidou D; Zotou A; Theodoridis G Metabolomics; 2018 Dec; 14(12):159. PubMed ID: 30830493 [TBL] [Abstract][Full Text] [Related]
18. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production. Forde CG; Cox A; Williams ER; Boss PK J Agric Food Chem; 2011 Mar; 59(6):2573-83. PubMed ID: 21332199 [TBL] [Abstract][Full Text] [Related]
19. Determination of furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) in some wines from Italian native grapes by Gas-Chromatography-SIM/MASS spectrometry. Genovese A; Piombino P; Lisanti MT; Moio L Ann Chim; 2005 Jun; 95(6):415-9. PubMed ID: 16136836 [TBL] [Abstract][Full Text] [Related]
20. Influence of glycosidases addition on selected monoterpenes contents in musts and white wines from two grape varieties grown in Poland. Dziadas M; Jeleń H Acta Sci Pol Technol Aliment; 2011; 10(1):7-17. PubMed ID: 22232525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]