These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 30830512)
1. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Batista AD; Rosa RM; Machado M; Magalhães AS; Shalaguti BA; Gomes PF; Covell L; Vaz MGMV; Araújo WL; Nunes-Nesi A Metabolomics; 2019 Feb; 15(3):31. PubMed ID: 30830512 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Karpagam R; Preeti R; Ashokkumar B; Varalakshmi P Ecotoxicol Environ Saf; 2015 Nov; 121():253-7. PubMed ID: 25838071 [TBL] [Abstract][Full Text] [Related]
3. Urea as a source of nitrogen and carbon leads to increased photosynthesis rates in Chlamydomonas reinhardtii under mixotrophy. Rosa RM; Machado M; Vaz MGMV; Lopes-Santos R; Nascimento AGD; Araújo WL; Nunes-Nesi A J Biotechnol; 2023 Apr; 367():20-30. PubMed ID: 36966923 [TBL] [Abstract][Full Text] [Related]
4. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Wase N; Black PN; Stanley BA; DiRusso CC J Proteome Res; 2014 Mar; 13(3):1373-96. PubMed ID: 24528286 [TBL] [Abstract][Full Text] [Related]
5. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Lee DY; Park JJ; Barupal DK; Fiehn O Mol Cell Proteomics; 2012 Oct; 11(10):973-88. PubMed ID: 22787274 [TBL] [Abstract][Full Text] [Related]
6. The Roles of Cullins E3 Ubiquitin Ligases in the Lipid Biosynthesis of the Green Microalgae Luo Q; Zou X; Wang C; Li Y; Hu Z Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946721 [TBL] [Abstract][Full Text] [Related]
7. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related]
8. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii. Patel AK; Huang EL; Low-Décarie E; Lefsrud MG J Proteome Res; 2015 Aug; 14(8):3051-67. PubMed ID: 25997359 [TBL] [Abstract][Full Text] [Related]
9. pH effects on the lipid and fatty acids accumulation in Chlamydomonas reinhardtii. Ochoa-Alfaro AE; Gaytán-Luna DE; González-Ortega O; Zavala-Arias KG; Paz-Maldonado LMT; Rocha-Uribe A; Soria-Guerra RE Biotechnol Prog; 2019 Nov; 35(6):e2891. PubMed ID: 31374159 [TBL] [Abstract][Full Text] [Related]
10. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Park JJ; Wang H; Gargouri M; Deshpande RR; Skepper JN; Holguin FO; Juergens MT; Shachar-Hill Y; Hicks LM; Gang DR Plant J; 2015 Feb; 81(4):611-24. PubMed ID: 25515814 [TBL] [Abstract][Full Text] [Related]
11. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas. Remacle C; Eppe G; Coosemans N; Fernandez E; Vigeolas H J Exp Bot; 2014 Jan; 65(1):23-33. PubMed ID: 24187418 [TBL] [Abstract][Full Text] [Related]
12. A cost-effective approach to produce Nicolás Carcelén J; Marchante-Gayón JM; González PR; Valledor L; Cañal MJ; Alonso JIG Microb Cell Fact; 2017 Aug; 16(1):146. PubMed ID: 28821247 [TBL] [Abstract][Full Text] [Related]
13. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. James GO; Hocart CH; Hillier W; Chen H; Kordbacheh F; Price GD; Djordjevic MA Bioresour Technol; 2011 Feb; 102(3):3343-51. PubMed ID: 21146403 [TBL] [Abstract][Full Text] [Related]
14. Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Jang CH; Lee G; Park YC; Kim KH; Lee DY J Microbiol Biotechnol; 2017 Jun; 27(6):1150-1156. PubMed ID: 28372038 [TBL] [Abstract][Full Text] [Related]
15. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. Tan KW; Lee YK J Biotechnol; 2017 Apr; 247():60-67. PubMed ID: 28279815 [TBL] [Abstract][Full Text] [Related]
16. Enhanced biomass production and harvesting efficiency of Chlamydomonas reinhardtii under high-ammonium conditions by powdered oyster shell. Sui J; Cui Y; Zhang J; Li S; Zhao Y; Bai M; Feng G; Wu H Bioresour Technol; 2024 Jul; 403():130904. PubMed ID: 38801957 [TBL] [Abstract][Full Text] [Related]
17. Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii. Yamasaki Y; Yokose T; Nishikawa T; Kim D; Jiang Z; Yamaguchi K; Oda T J Biosci Bioeng; 2012 Jan; 113(1):112-6. PubMed ID: 22018736 [TBL] [Abstract][Full Text] [Related]
18. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Liu B; Vieler A; Li C; Daniel Jones A; Benning C Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Li-Beisson Y; Beisson F; Riekhof W Plant J; 2015 May; 82(3):504-522. PubMed ID: 25660108 [TBL] [Abstract][Full Text] [Related]
20. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii. Goold HD; Cuiné S; Légeret B; Liang Y; Brugière S; Auroy P; Javot H; Tardif M; Jones B; Beisson F; Peltier G; Li-Beisson Y Plant Physiol; 2016 Aug; 171(4):2406-17. PubMed ID: 27297678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]