These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications. Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865 [TBL] [Abstract][Full Text] [Related]
3. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. Koutsopoulos S J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893 [TBL] [Abstract][Full Text] [Related]
4. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Zhang H; Park J; Jiang Y; Woodrow KA Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480 [TBL] [Abstract][Full Text] [Related]
5. Designer bFGF-incorporated d-form self-assembly peptide nanofiber scaffolds to promote bone repair. He B; Ou Y; Chen S; Zhao W; Zhou A; Zhao J; Li H; Jiang D; Zhu Y Mater Sci Eng C Mater Biol Appl; 2017 May; 74():451-458. PubMed ID: 28254316 [TBL] [Abstract][Full Text] [Related]
6. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7]. Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281 [TBL] [Abstract][Full Text] [Related]
7. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels. Pugliese R; Fontana F; Marchini A; Gelain F Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535 [TBL] [Abstract][Full Text] [Related]
8. Tunable Pentapeptide Self-Assembled β-Sheet Hydrogels. Clarke DE; Parmenter CDJ; Scherman OA Angew Chem Int Ed Engl; 2018 Jun; 57(26):7709-7713. PubMed ID: 29603545 [TBL] [Abstract][Full Text] [Related]
9. An Injectable Self-Healing Protein Hydrogel with Multiple Dissipation Modes and Tunable Dynamic Response. Sun W; Duan T; Cao Y; Li H Biomacromolecules; 2019 Nov; 20(11):4199-4207. PubMed ID: 31553595 [TBL] [Abstract][Full Text] [Related]
10. Glycine Substitution Effects on the Supramolecular Morphology and Rigidity of Cell-Adhesive Amphiphilic Peptides. Ishida A; Watanabe G; Oshikawa M; Ajioka I; Muraoka T Chemistry; 2019 Oct; 25(59):13523-13530. PubMed ID: 31283853 [TBL] [Abstract][Full Text] [Related]
11. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
12. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
13. New Synthesis Route of Hydrogel through A Bioinspired Supramolecular Approach: Gelation, Binding Interaction, and in Vitro Dressing. Cheng C; Tang MC; Wu CS; Simon T; Ko FH ACS Appl Mater Interfaces; 2015 Sep; 7(34):19306-15. PubMed ID: 26271338 [TBL] [Abstract][Full Text] [Related]
14. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]