BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30830784)

  • 1. Improved Intracellular Delivery of Polyarginine Peptides with Cargoes.
    Hu J; Lou Y; Wu F
    J Phys Chem B; 2019 Mar; 123(12):2636-2644. PubMed ID: 30830784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained molecular dynamics studies of the translocation mechanism of polyarginines across asymmetric membrane under tension.
    He X; Lin M; Sha B; Feng S; Shi X; Qu Z; Xu F
    Sci Rep; 2015 Aug; 5():12808. PubMed ID: 26235300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics.
    Lin J; Alexander-Katz A
    ACS Nano; 2013 Dec; 7(12):10799-808. PubMed ID: 24251827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potential drives direct translocation of cell-penetrating peptides.
    Gao X; Hong S; Liu Z; Yue T; Dobnikar J; Zhang X
    Nanoscale; 2019 Jan; 11(4):1949-1958. PubMed ID: 30644958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane interactions of two arginine-rich peptides with different cell internalization capacities.
    Walrant A; Vogel A; Correia I; Lequin O; Olausson BE; Desbat B; Sagan S; Alves ID
    Biochim Biophys Acta; 2012 Jul; 1818(7):1755-63. PubMed ID: 22402267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of molecular simulations in understanding the mechanisms of cell-penetrating peptides.
    Reid LM; Verma CS; Essex JW
    Drug Discov Today; 2019 Sep; 24(9):1821-1835. PubMed ID: 31229665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides.
    Liu J; Afshar S
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics.
    Grasso G; Muscat S; Rebella M; Morbiducci U; Audenino A; Danani A; Deriu MA
    J Biomech; 2018 May; 73():137-144. PubMed ID: 29631749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of lipid membrane based assays to accurately predict the transfection efficiency of cell-penetrating peptide-based gene nanoparticles.
    Alhakamy NA; Alaofi AL; Ahmed OAA; Fahmy UA; Md S; Abdulaal WH; Alfaleh MA; Chakraborty A; Berkland CJ; Dhar P
    Int J Pharm; 2020 Apr; 580():119221. PubMed ID: 32165227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group.
    Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H
    J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Primary Mechanism of Cellular Internalization for a Short Cell- Penetrating Peptide as a Nano-Scale Delivery System.
    Liu BR; Huang YW; Korivi M; Lo S-Y; Aronstam RS; Lee H-J
    Curr Pharm Biotechnol; 2017; 18(7):569-584. PubMed ID: 28828981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E).
    Martín I; Teixidó M; Giralt E
    Chembiochem; 2011 Apr; 12(6):896-903. PubMed ID: 21365733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy.
    Ramírez PG; Del Pópolo MG; Vila JA; Szleifer I; Longo GS
    J Colloid Interface Sci; 2019 Sep; 552():701-711. PubMed ID: 31176053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide.
    Kanwar JR; Gibbons J; Verma AK; Kanwar RK
    Anticancer Drugs; 2012 Jun; 23(5):471-82. PubMed ID: 22241171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.