BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30831140)

  • 1. Neuroprotective effect of tanshinone IIA-incubated mesenchymal stem cells on Aβ
    Huang N; Li Y; Zhou Y; Zhou Y; Feng F; Shi S; Ba Z; Luo Y
    Behav Brain Res; 2019 Jun; 365():48-55. PubMed ID: 30831140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesenchymal stem cells after the proprocessing of tanshinone IIA attenuate cognitive deficits and oxidative stress injury in an amyloid β-peptide (25-35)-induced rodent model of Alzheimer's disease.
    Ba Z; Shi S; Huang N; Li Y; Huang J; You C; Yang X; Liu D; Yu C; He Y; Luo Y
    Neuroreport; 2022 Jan; 33(2):61-71. PubMed ID: 34954772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of tanshinone IIA and mesenchymal stem cell treatment of learning and memory impairment in a rat model of vascular dementia.
    Kong D; Luo J; Shi S; Huang Z
    J Tradit Chin Med; 2021 Feb; 41(1):133-139. PubMed ID: 33522206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective effect of tanshinone IIA-modified mesenchymal stem cells in a lipopolysaccharide-induced neuroinflammation model.
    Wu J; Chen J; Ge Y; Huang N; Luo Y
    Heliyon; 2024 Apr; 10(8):e29424. PubMed ID: 38638958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model.
    Zhang XM; Ma J; Sun Y; Yu BQ; Jiao ZM; Wang D; Yu MY; Li JY; Fu J
    J Transl Med; 2018 Jul; 16(1):193. PubMed ID: 30001730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility and Efficacy of Intra-Arterial Administration of Embryonic Stem Cell Derived-Mesenchymal Stem Cells in Animal Model of Alzheimer's Disease.
    Kim DY; Choi SH; Lee JS; Kim HJ; Kim HN; Lee JE; Shin JY; Lee PH
    J Alzheimers Dis; 2020; 76(4):1281-1296. PubMed ID: 32597802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro.
    Ding B; Lin C; Liu Q; He Y; Ruganzu JB; Jin H; Peng X; Ji S; Ma Y; Yang W
    J Neuroinflammation; 2020 Oct; 17(1):302. PubMed ID: 33054814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer's disease.
    Maione F; Piccolo M; De Vita S; Chini MG; Cristiano C; De Caro C; Lippiello P; Miniaci MC; Santamaria R; Irace C; De Feo V; Calignano A; Mascolo N; Bifulco G
    Pharmacol Res; 2018 Mar; 129():482-490. PubMed ID: 29158049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tanshinone IIA attenuates Aβ
    Zhu J; Liao S; Zhou L; Wan L
    J Pharm Pharmacol; 2017 Feb; 69(2):191-201. PubMed ID: 27882565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-derived neurotrophic factor modified human umbilical cord mesenchymal stem cells-derived cholinergic-like neurons improve spatial learning and memory ability in Alzheimer's disease rats.
    Hu W; Feng Z; Xu J; Jiang Z; Feng M
    Brain Res; 2019 May; 1710():61-73. PubMed ID: 30586546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium Hydrosulfide Attenuates Beta-Amyloid-Induced Cognitive Deficits and Neuroinflammation via Modulation of MAPK/NF-κB Pathway in Rats.
    Liu H; Deng Y; Gao J; Liu Y; Li W; Shi J; Gong Q
    Curr Alzheimer Res; 2015; 12(7):673-83. PubMed ID: 26165866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Compound AD-35 Improves Cognitive Impairment and Attenuates the Production of TNF-α and IL-1β in an Aβ25-35-induced Rat Model of Alzheimer's Disease.
    Li L; Xu S; Liu L; Feng R; Gong Y; Zhao X; Li J; Cai J; Feng N; Wang L; Wang X; Peng Y
    J Alzheimers Dis; 2017; 56(4):1403-1417. PubMed ID: 28157092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models.
    Shin JY; Park HJ; Kim HN; Oh SH; Bae JS; Ha HJ; Lee PH
    Autophagy; 2014 Jan; 10(1):32-44. PubMed ID: 24149893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Effects of Transplantation of As-MiR-937-Expressing Mesenchymal Stem Cells in Murine Model of Alzheimer's Disease.
    Liu Z; Wang C; Wang X; Xu S
    Cell Physiol Biochem; 2015; 37(1):321-30. PubMed ID: 26316079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin-pretreated adipose-derived mesenchymal stem cells efficeintly improved learning, memory, and cognition in an animal model of Alzheimer's disease.
    Nasiri E; Alizadeh A; Roushandeh AM; Gazor R; Hashemi-Firouzi N; Golipoor Z
    Metab Brain Dis; 2019 Aug; 34(4):1131-1143. PubMed ID: 31129766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow-derived mesenchymal stem cells attenuate amyloid β-induced memory impairment and apoptosis by inhibiting neuronal cell death.
    Lee JK; Jin HK; Bae JS
    Curr Alzheimer Res; 2010 Sep; 7(6):540-8. PubMed ID: 20455866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective effects of INT-777 against Aβ
    Wu X; Lv YG; Du YF; Chen F; Reed MN; Hu M; Suppiramaniam V; Tang SS; Hong H
    Brain Behav Immun; 2018 Oct; 73():533-545. PubMed ID: 29935310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia.
    Liu X; Ye M; An C; Pan L; Ji L
    Biomaterials; 2013 Sep; 34(28):6893-905. PubMed ID: 23768781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tanshinone IIA and astragaloside IV promote the migration of mesenchymal stem cells by up-regulation of CXCR4.
    Xie J; Wang H; Song T; Wang Z; Li F; Ma J; Chen J; Nan Y; Yi H; Wang W
    Protoplasma; 2013 Apr; 250(2):521-30. PubMed ID: 22872094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers.
    de Godoy MA; Saraiva LM; de Carvalho LRP; Vasconcelos-Dos-Santos A; Beiral HJV; Ramos AB; Silva LRP; Leal RB; Monteiro VHS; Braga CV; de Araujo-Silva CA; Sinis LC; Bodart-Santos V; Kasai-Brunswick TH; Alcantara CL; Lima APCA; da Cunha-E Silva NL; Galina A; Vieyra A; De Felice FG; Mendez-Otero R; Ferreira ST
    J Biol Chem; 2018 Feb; 293(6):1957-1975. PubMed ID: 29284679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.