These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30831174)

  • 1. Calculating stochastic inactivation of individual cells in a bacterial population using variability in individual cell inactivation time and initial cell number.
    Koyama K; Abe H; Kawamura S; Koseki S
    J Theor Biol; 2019 May; 469():172-179. PubMed ID: 30831174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic simulation for death probability of bacterial population considering variability in individual cell inactivation time and initial number of cells.
    Koyama K; Abe H; Kawamura S; Koseki S
    Int J Food Microbiol; 2019 Feb; 290():125-131. PubMed ID: 30326383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming kinetic model into a stochastic inactivation model: Statistical evaluation of stochastic inactivation of individual cells in a bacterial population.
    Hiura S; Abe H; Koyama K; Koseki S
    Food Microbiol; 2020 Oct; 91():103508. PubMed ID: 32539982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic evaluation of Salmonella enterica lethality during thermal inactivation.
    Abe H; Koyama K; Kawamura S; Koseki S
    Int J Food Microbiol; 2018 Nov; 285():129-135. PubMed ID: 30118951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the probability of bacterial population survival: Development of a probability model to describe the variability in time to inactivation of Salmonella enterica.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Food Microbiol; 2017 Dec; 68():121-128. PubMed ID: 28800819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic modeling of variability in survival behavior of Bacillus simplex spore population during isothermal inactivation at the single cell level using a Monte Carlo simulation.
    Abe H; Koyama K; Kawamura S; Koseki S
    Food Microbiol; 2019 Sep; 82():436-444. PubMed ID: 31027803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic formulation of the gompertzian growth model for in vitro bactericidal kinetics: parameter estimation and extinction probability.
    Ferrante L; Bompadre S; Leone L; Montanari MP
    Biom J; 2005 Jun; 47(3):309-18. PubMed ID: 16053255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual cell heterogeneity as variability source in population dynamics of microbial inactivation.
    Aspridou Z; Koutsoumanis KP
    Food Microbiol; 2015 Feb; 45(Pt B):216-21. PubMed ID: 25500387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of growth rate from kinetic model to calculate stochastic growth of a bacteria population at low contamination level.
    Koyama K; Hiura S; Abe H; Koseki S
    J Theor Biol; 2021 Sep; 525():110758. PubMed ID: 33984354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability in microbial inactivation: From deterministic Bigelow model to probability distribution of single cell inactivation times.
    Aspridou Z; Koutsoumanis K
    Food Res Int; 2020 Nov; 137():109579. PubMed ID: 33233190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic and deterministic model of microbial heat inactivation.
    Corradini MG; Normand MD; Peleg M
    J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models.
    Sato T; Furusawa Y
    Radiat Res; 2012 Oct; 178(4):341-56. PubMed ID: 22880622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity of single cell inactivation: Assessment of the individual cell time to death and implications in population behavior.
    Aspridou Z; Balomenos A; Tsakanikas P; Manolakos E; Koutsoumanis K
    Food Microbiol; 2019 Jun; 80():85-92. PubMed ID: 30704600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic process pharmacodynamics: dose timing in neonatal gentamicin therapy as an example.
    Radivoyevitch T; Siranart N; Hlatky L; Sachs R
    AAPS J; 2015 Mar; 17(2):447-56. PubMed ID: 25663652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinterpretation of microbial survival curves.
    Peleg M; Cole MB
    Crit Rev Food Sci Nutr; 1998 Jul; 38(5):353-80. PubMed ID: 9704188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the stochastic modeling of tracer kinetics.
    Matis JH; Tolley HD
    Fed Proc; 1980 Jan; 39(1):104-9. PubMed ID: 7351238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV inactivation and model of UV inactivation of foot-and-mouth disease viruses in suspension.
    Nuanualsuwan S; Thongtha P; Kamolsiripichaiporn S; Subharat S
    Int J Food Microbiol; 2008 Sep; 127(1-2):84-90. PubMed ID: 18625534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells.
    van Boekel MA
    Int J Food Microbiol; 2002 Mar; 74(1-2):139-59. PubMed ID: 11930951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of input data variability on estimations of the equivalent constant temperature time for microbial inactivation by HTST and retort thermal processing.
    Salgado D; Torres JA; Welti-Chanes J; Velazquez G
    J Food Sci; 2011 Aug; 76(6):E495-502. PubMed ID: 21729079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.