These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30831267)

  • 1. De novo production of benzyl glucosinolate in Escherichia coli.
    Petersen A; Crocoll C; Halkier BA
    Metab Eng; 2019 Jul; 54():24-34. PubMed ID: 30831267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli.
    Yang H; Qin J; Wang X; Ei-Shora HM; Yu B
    Microbiol Res; 2020 Sep; 238():126484. PubMed ID: 32408045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase.
    Miki Y; Asano Y
    Appl Environ Microbiol; 2014 Nov; 80(21):6828-36. PubMed ID: 25172862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic biology strategies for microbial biosynthesis of plant natural products.
    Cravens A; Payne J; Smolke CD
    Nat Commun; 2019 May; 10(1):2142. PubMed ID: 31086174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli.
    Liu F; Yang H; Wang L; Yu B
    ACS Synth Biol; 2016 Dec; 5(12):1557-1565. PubMed ID: 27389525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae.
    Wang C; Poborsky M; Crocoll C; Nødvig CS; Mortensen UH; Halkier BA
    Appl Environ Microbiol; 2022 Nov; 88(22):e0097822. PubMed ID: 36326240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of Novel Biosynthetic Pathways for the Production of Salicyl Alcohol and Gentisyl Alcohol in Engineered Escherichia coli.
    Shen X; Wang J; Gall BK; Ferreira EM; Yuan Q; Yan Y
    ACS Synth Biol; 2018 Apr; 7(4):1012-1017. PubMed ID: 29570271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli.
    Mirza N; Crocoll C; Erik Olsen C; Ann Halkier B
    Metab Eng; 2016 May; 35():31-37. PubMed ID: 26410451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased 3'-Phosphoadenosine-5'-phosphosulfate Levels in Engineered Escherichia coli Cell Lysate Facilitate the In Vitro Synthesis of Chondroitin Sulfate A.
    Badri A; Williams A; Xia K; Linhardt RJ; Koffas MAG
    Biotechnol J; 2019 Sep; 14(9):e1800436. PubMed ID: 31180182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for α-farnesene production.
    Wang C; Yoon SH; Jang HJ; Chung YR; Kim JY; Choi ES; Kim SW
    Metab Eng; 2011 Nov; 13(6):648-55. PubMed ID: 21907299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving L-serine formation by Escherichia coli by reduced uptake of produced L-serine.
    Wang C; Wu J; Shi B; Shi J; Zhao Z
    Microb Cell Fact; 2020 Mar; 19(1):66. PubMed ID: 32169078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing Biosynthetic Pathway of the Plant-Derived Cancer Chemopreventive-Precursor Glucoraphanin in Escherichia coli.
    Yang H; Liu F; Li Y; Yu B
    ACS Synth Biol; 2018 Jan; 7(1):121-131. PubMed ID: 29149798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Glucosinolate Production in Brassica oleracea var. italica Cell Cultures Due to Coronatine Activated Genes Involved in Glucosinolate Biosynthesis.
    Sánchez-Pujante PJ; Sabater-Jara AB; Belchí-Navarro S; Pedreño MA; Almagro L
    J Agric Food Chem; 2019 Jan; 67(1):102-111. PubMed ID: 30566344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis.
    Bekaert M; Edger PP; Hudson CM; Pires JC; Conant GC
    New Phytol; 2012 Oct; 196(2):596-605. PubMed ID: 22943527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa.
    Zang YX; Kim HU; Kim JA; Lim MH; Jin M; Lee SC; Kwon SJ; Lee SI; Hong JK; Park TH; Mun JH; Seol YJ; Hong SB; Park BS
    FEBS J; 2009 Jul; 276(13):3559-74. PubMed ID: 19456863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering endogenous l-proline biosynthetic pathway to boost trans-4-hydroxy-l-proline production in Escherichia coli.
    Jiang L; Pang J; Yang L; Li W; Duan L; Zhang G; Luo Y
    J Biotechnol; 2021 Mar; 329():104-117. PubMed ID: 33539894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of sulfur metabolism enables efficient glucosinolate engineering.
    Møldrup ME; Geu-Flores F; Olsen CE; Halkier BA
    BMC Biotechnol; 2011 Jan; 11():12. PubMed ID: 21281472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
    Machas MS; McKenna R; Nielsen DR
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate.
    Petersen BL; Andréasson E; Bak S; Agerbirk N; Halkier BA
    Planta; 2001 Mar; 212(4):612-8. PubMed ID: 11525519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.