These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
595 related articles for article (PubMed ID: 30831327)
1. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
2. 3D-bioprintable endothelial cell-laden sacrificial ink for fabrication of microvessel networks. Cheng KC; Theato P; Hsu SH Biofabrication; 2023 Sep; 15(4):. PubMed ID: 37722376 [TBL] [Abstract][Full Text] [Related]
3. 3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity. Abaci A; Guvendiren M Biofabrication; 2024 Jun; 16(3):. PubMed ID: 38821144 [TBL] [Abstract][Full Text] [Related]
4. The Research on Multi-material 3D Vascularized Network Integrated Printing Technology. Yang S; Tang H; Feng C; Shi J; Yang J Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32106448 [TBL] [Abstract][Full Text] [Related]
5. Sheet-based extrusion bioprinting: a new multi-material paradigm providing mid-extrusion micropatterning control for microvascular applications. Hooper R; Cummings C; Beck A; Vazquez-Armendariz J; Rodriguez C; Dean D Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447217 [TBL] [Abstract][Full Text] [Related]
6. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. You F; Eames BF; Chen X Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701 [TBL] [Abstract][Full Text] [Related]
7. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks. Brunel LG; Hull SM; Heilshorn SC Biofabrication; 2022 May; 14(3):. PubMed ID: 35487196 [TBL] [Abstract][Full Text] [Related]
8. Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs. Hassan S; Gomez-Reyes E; Enciso-Martinez E; Shi K; Campos JG; Soria OYP; Luna-Cerón E; Lee MC; Garcia-Reyes I; Steakelum J; Jeelani H; García-Rivera LE; Cho M; Cortes SS; Kamperman T; Wang H; Leijten J; Fiondella L; Shin SR ACS Appl Mater Interfaces; 2022 Nov; 14(46):51602-51618. PubMed ID: 36346873 [TBL] [Abstract][Full Text] [Related]
9. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities. Wu CA; Zhu Y; Venkatesh A; Stark CJ; Lee SH; Woo YJ Tissue Eng Part C Methods; 2023 Mar; 29(3):85-94. PubMed ID: 36719778 [TBL] [Abstract][Full Text] [Related]
10. Bioprinting of a Cell-Laden Conductive Hydrogel Composite. Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791 [TBL] [Abstract][Full Text] [Related]
11. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Shukla P; Bera AK; Yeleswarapu S; Pati F Macromol Biosci; 2024 Aug; 24(8):e2400035. PubMed ID: 38685795 [TBL] [Abstract][Full Text] [Related]
12. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. Dubey N; Ferreira JA; Malda J; Bhaduri SB; Bottino MC ACS Appl Mater Interfaces; 2020 May; 12(21):23752-23763. PubMed ID: 32352748 [TBL] [Abstract][Full Text] [Related]
13. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Unagolla JM; Jayasuriya AC Appl Mater Today; 2020 Mar; 18():. PubMed ID: 32775607 [TBL] [Abstract][Full Text] [Related]
15. Cell-laden alginate dialdehyde-gelatin hydrogels formed in 3D printed sacrificial gel. Dranseikiene D; Schrüfer S; Schubert DW; Reakasame S; Boccaccini AR J Mater Sci Mater Med; 2020 Mar; 31(3):31. PubMed ID: 32152812 [TBL] [Abstract][Full Text] [Related]
16. Electron Spin Resonance Probe Incorporation into Bioinks Permits Longitudinal Oxygen Imaging of Bioprinted Constructs. Sarvari S; McGee D; O'Connell R; Tseytlin O; Bobko AA; Tseytlin M Mol Imaging Biol; 2024 Jun; 26(3):511-524. PubMed ID: 38038860 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy. Bo T; Pascucci E; Capuani S; Campa-Carranza JN; Franco L; Farina M; Secco J; Becchi S; Cavazzana R; Joubert AL; Hernandez N; Chua CYX; Grattoni A Biomed Microdevices; 2024 Jun; 26(3):29. PubMed ID: 38888669 [TBL] [Abstract][Full Text] [Related]
18. Highly Elastic Biodegradable Single-Network Hydrogel for Cell Printing. Xu C; Lee W; Dai G; Hong Y ACS Appl Mater Interfaces; 2018 Mar; 10(12):9969-9979. PubMed ID: 29451384 [TBL] [Abstract][Full Text] [Related]
19. High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Levato R; Lim KS; Li W; Asua AU; Peña LB; Wang M; Falandt M; Bernal PN; Gawlitta D; Zhang YS; Woodfield TBF; Malda J Mater Today Bio; 2021 Sep; 12():100162. PubMed ID: 34870141 [TBL] [Abstract][Full Text] [Related]
20. Development of digital light processing-based multi-material bioprinting for fabrication of heterogeneous tissue constructs. Su H; Lu B; Li M; Yang X; Qin M; Wu Y Biomater Sci; 2023 Sep; 11(19):6663-6673. PubMed ID: 37614165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]