These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
595 related articles for article (PubMed ID: 30831327)
21. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. Kajave NS; Schmitt T; Nguyen TU; Kishore V Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110290. PubMed ID: 31761199 [TBL] [Abstract][Full Text] [Related]
22. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. GhavamiNejad A; Ashammakhi N; Wu XY; Khademhosseini A Small; 2020 Sep; 16(35):e2002931. PubMed ID: 32734720 [TBL] [Abstract][Full Text] [Related]
23. 3D Functional Neuronal Networks in Free-Standing Bioprinted Hydrogel Constructs. Yao Y; Coleman HA; Meagher L; Forsythe JS; Parkington HC Adv Healthc Mater; 2023 Nov; 12(28):e2300801. PubMed ID: 37369123 [TBL] [Abstract][Full Text] [Related]
24. Bio-printing cell-laden Matrigel-agarose constructs. Fan R; Piou M; Darling E; Cormier D; Sun J; Wan J J Biomater Appl; 2016 Nov; 31(5):684-692. PubMed ID: 27638155 [TBL] [Abstract][Full Text] [Related]
25. Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks. Shi W; Mirza S; Kuss M; Liu B; Hartin A; Wan S; Kong Y; Mohapatra B; Krishnan M; Band H; Band V; Duan B Adv Healthc Mater; 2023 Oct; 12(26):e2300905. PubMed ID: 37422447 [TBL] [Abstract][Full Text] [Related]
26. Aspects of a Suspended Bioprinting System Affect Cell Viability and Support Bath Properties. Navara AM; Xu Y; Perez MR; Mikos AG Tissue Eng Part A; 2024 Jun; 30(11-12):256-269. PubMed ID: 37341034 [TBL] [Abstract][Full Text] [Related]
27. Embedded Printing of Hydrogels and Watery Suspensions of Cells in Patterned Granular Baths. Trikalitis VD; Perea Paizal J; Rangel V; Stein F; Rouwkema J Tissue Eng Part C Methods; 2024 May; 30(5):206-216. PubMed ID: 38568935 [TBL] [Abstract][Full Text] [Related]
28. Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs. Ferreira LP; Jorge C; Lagarto MR; Monteiro MV; Duarte IF; Gaspar VM; Mano JF Acta Biomater; 2024 Jul; 183():74-88. PubMed ID: 38838910 [TBL] [Abstract][Full Text] [Related]
29. 3D bioprinting for engineering complex tissues. Mandrycky C; Wang Z; Kim K; Kim DH Biotechnol Adv; 2016; 34(4):422-434. PubMed ID: 26724184 [TBL] [Abstract][Full Text] [Related]
30. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen-Based Low-Viscosity Composites. Wang S; Bai L; Hu X; Yao S; Hao Z; Zhou J; Li X; Lu H; He J; Wang L; Li D Adv Healthc Mater; 2023 Oct; 12(25):e2300004. PubMed ID: 37264745 [TBL] [Abstract][Full Text] [Related]
31. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Ji S; Guvendiren M Front Bioeng Biotechnol; 2017; 5():23. PubMed ID: 28424770 [TBL] [Abstract][Full Text] [Related]
32. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Budharaju H; Sundaramurthi D; Sethuraman S Bioact Mater; 2024 Feb; 32():356-384. PubMed ID: 37920828 [TBL] [Abstract][Full Text] [Related]
33. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. Wang LL; Highley CB; Yeh YC; Galarraga JH; Uman S; Burdick JA J Biomed Mater Res A; 2018 Apr; 106(4):865-875. PubMed ID: 29314616 [TBL] [Abstract][Full Text] [Related]
34. Hybrid Biofabrication of Heterogeneous 3D Constructs Using Low-Viscosity Bioinks. Kim SJ; Lee G; Park JK ACS Appl Mater Interfaces; 2023 Sep; 15(35):41247-41257. PubMed ID: 37615296 [TBL] [Abstract][Full Text] [Related]
35. Sacrificial scaffold-assisted direct ink writing of engineered aortic valve prostheses. Zhang C; Hao J; Shi W; Su Y; Mitchell K; Hua W; Jin W; Lee S; Wen L; Jin Y; Zhao D Biofabrication; 2023 Aug; 15(4):. PubMed ID: 37579750 [TBL] [Abstract][Full Text] [Related]
36. Bioprinting Cell-Laden Hydrogels for Studies of Epithelial Tissue Morphogenesis. Nerger BA; Nelson CM Methods Mol Biol; 2024; 2805():113-124. PubMed ID: 39008177 [TBL] [Abstract][Full Text] [Related]
37. Hydrogel-based reinforcement of 3D bioprinted constructs. Melchels FPW; Blokzijl MM; Levato R; Peiffer QC; de Ruijter M; Hennink WE; Vermonden T; Malda J Biofabrication; 2016 Jul; 8(3):035004. PubMed ID: 27431861 [TBL] [Abstract][Full Text] [Related]
38. Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing. Cheng F; Cao X; Li H; Liu T; Xie X; Huang D; Maharjan S; Bei HP; Gómez A; Li J; Zhan H; Shen H; Liu S; He J; Zhang YS Nano Lett; 2019 Jun; 19(6):3603-3611. PubMed ID: 31010289 [TBL] [Abstract][Full Text] [Related]
39. Single-Step 3D Bioprinting of Alginate-Collagen Type I Hydrogel Fiber Rings to Promote Angiogenic Network Formation. Li YB; Rukhlova M; Zhang D; Nhan J; Sodja C; Bedford E; St-Pierre JP; Jezierski A Tissue Eng Part C Methods; 2024 Jul; 30(7):289-306. PubMed ID: 38946589 [TBL] [Abstract][Full Text] [Related]
40. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Huh J; Moon YW; Park J; Atala A; Yoo JJ; Lee SJ Biofabrication; 2021 May; 13(3):. PubMed ID: 33930877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]