These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30831360)

  • 21. Effect of chlorimuron-ethyl on Bradyrhizobium japonicum and its symbiosis with soybean.
    Zawoznik MS; Tomaro ML
    Pest Manag Sci; 2005 Oct; 61(10):1003-8. PubMed ID: 15920784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bradyrhizobium sp. enhance ureide metabolism increasing peanuts yield.
    Gericó TG; Tavanti RFR; de Oliveira SC; Lourenzani AEBS; de Lima JP; Ribeiro RP; Dos Santos LCC; Dos Reis AR
    Arch Microbiol; 2020 Apr; 202(3):645-656. PubMed ID: 31776586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-existence of Leclercia adecarboxylata (LSE-1) and Bradyrhizobium sp. (LSBR-3) in nodule niche for multifaceted effects and profitability in soybean production.
    Kumawat KC; Sharma P; Singh I; Sirari A; Gill BS
    World J Microbiol Biotechnol; 2019 Oct; 35(11):172. PubMed ID: 31673798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response of Soybean to Hydrochar-Based
    Egamberdieva D; Ma H; Alimov J; Reckling M; Wirth S; Bellingrath-Kimura SD
    Microorganisms; 2020 Oct; 8(11):. PubMed ID: 33126699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inoculation with an enhanced N2 -fixing Bradyrhizobium japonicum strain (USDA110) does not alter soybean (Glycine max Merr.) response to elevated [CO2 ].
    Sanz-Sáez Á; Heath KD; Burke PV; Ainsworth EA
    Plant Cell Environ; 2015 Dec; 38(12):2589-602. PubMed ID: 26012898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular and physiological analysis of indole-3-acetic acid degradation in Bradyrhizobium japonicum E109.
    Torres D; Mongiardini E; Donadío F; Donoso R; Recabarren-Gajardo G; Gualpa J; Spaepen S; Defez R; Lopez G; Bianco C; Cassán F
    Res Microbiol; 2021; 172(3):103814. PubMed ID: 33539931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation.
    da Cunha ET; Pedrolo AM; Arisi ACM
    J Sci Food Agric; 2024 Jul; 104(9):5360-5367. PubMed ID: 38324183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees.
    Tiepo AN; Constantino LV; Madeira TB; Gonçalves LSA; Pimenta JA; Bianchini E; de Oliveira ALM; Oliveira HC; Stolf-Moreira R
    Planta; 2020 Mar; 251(4):83. PubMed ID: 32189086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.
    Fukami J; Ollero FJ; de la Osa C; Valderrama-Fernández R; Nogueira MA; Megías M; Hungria M
    Arch Microbiol; 2018 Oct; 200(8):1191-1203. PubMed ID: 29881875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean.
    Kumawat KC; Sharma P; Sirari A; Singh I; Gill BS; Singh U; Saharan K
    World J Microbiol Biotechnol; 2019 Mar; 35(3):47. PubMed ID: 30834977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the denitrification pathway and greenhouse gases emissions in Bradyrhizobium sp. strains used as biofertilizers in South America.
    Obando M; Correa-Galeote D; Castellano-Hinojosa A; Gualpa J; Hidalgo A; Alché JD; Bedmar E; Cassán F
    J Appl Microbiol; 2019 Sep; 127(3):739-749. PubMed ID: 30803109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.
    Palacios OA; Gomez-Anduro G; Bashan Y; de-Bashan LE
    FEMS Microbiol Ecol; 2016 Jun; 92(6):fiw077. PubMed ID: 27090758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum.
    Gregor AK; Klubek B; Varsa EC
    Can J Microbiol; 2003 Aug; 49(8):483-91. PubMed ID: 14608383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant.
    Vezza ME; Olmos Nicotra MF; Agostini E; Talano MA
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2287-2300. PubMed ID: 31776908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings.
    Masciarelli O; Urbani L; Reinoso H; Luna V
    J Microbiol; 2013 Oct; 51(5):590-7. PubMed ID: 24037658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D.
    Mehry A; Akbar M; Giti E
    Pak J Biol Sci; 2008 Jun; 11(12):1541-50. PubMed ID: 18819640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitigation of Cu stress by legume-Rhizobium symbiosis in white lupin and soybean plants.
    Sánchez-Pardo B; Zornoza P
    Ecotoxicol Environ Saf; 2014 Apr; 102():1-5. PubMed ID: 24580814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-Inoculation with
    Galindo FS; Pagliari PH; da Silva EC; Silva VM; Fernandes GC; Rodrigues WL; Céu EGO; de Lima BH; Jalal A; Muraoka T; Buzetti S; Lavres J; Teixeira Filho MCM
    Plants (Basel); 2022 Jul; 11(14):. PubMed ID: 35890481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation.
    Perrig D; Boiero ML; Masciarelli OA; Penna C; Ruiz OA; Cassán FD; Luna MV
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1143-50. PubMed ID: 17345081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Azospirillum brasilense Az39, a model rhizobacterium with AHL quorum-quenching capacity.
    Gualpa J; Lopez G; Nievas S; Coniglio A; Halliday N; Cámara M; Cassán F
    J Appl Microbiol; 2019 Jun; 126(6):1850-1860. PubMed ID: 30924989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.