These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
3. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Ikeuchi M; Ishizuka T Photochem Photobiol Sci; 2008 Oct; 7(10):1159-67. PubMed ID: 18846279 [TBL] [Abstract][Full Text] [Related]
4. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis. Suzuki T; Yoshimura M; Arai M; Narikawa R J Mol Biol; 2024 Mar; 436(5):168451. PubMed ID: 38246412 [TBL] [Abstract][Full Text] [Related]
5. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. Priyadarshini N; Steube N; Wiens D; Narikawa R; Wilde A; Hochberg GKA; Enomoto G Photochem Photobiol Sci; 2023 Jun; 22(6):1415-1427. PubMed ID: 36781703 [TBL] [Abstract][Full Text] [Related]
6. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process. Takeda Y; Ohtsu I; Suzuki T; Nakasone Y; Fushimi K; Ikeuchi M; Terazima M; Dohra H; Narikawa R Arch Biochem Biophys; 2023 Sep; 745():109715. PubMed ID: 37549803 [TBL] [Abstract][Full Text] [Related]
7. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor. Suzuki T; Yoshimura M; Hoshino H; Fushimi K; Arai M; Narikawa R FEBS J; 2023 Oct; 290(20):4999-5015. PubMed ID: 37488966 [TBL] [Abstract][Full Text] [Related]
8. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277 [TBL] [Abstract][Full Text] [Related]
9. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. Fushimi K; Narikawa R Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813 [TBL] [Abstract][Full Text] [Related]
10. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
11. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331 [TBL] [Abstract][Full Text] [Related]
12. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156 [TBL] [Abstract][Full Text] [Related]
13. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149 [TBL] [Abstract][Full Text] [Related]
14. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. Rockwell NC; Lagarias JC J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679 [TBL] [Abstract][Full Text] [Related]
15. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
17. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light. Wiltbank LB; Kehoe DM mBio; 2016 Feb; 7(1):e02130-15. PubMed ID: 26861023 [TBL] [Abstract][Full Text] [Related]
18. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089 [TBL] [Abstract][Full Text] [Related]
19. Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis. Fushimi K; Enomoto G; Ikeuchi M; Narikawa R Photochem Photobiol; 2017 May; 93(3):681-691. PubMed ID: 28500699 [TBL] [Abstract][Full Text] [Related]
20. Crystallization and preliminary X-ray studies of the chromophore-binding domain of cyanobacteriochrome AnPixJ from Anabaena sp. PCC 7120. Narikawa R; Muraki N; Shiba T; Ikeuchi M; Kurisu G Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Feb; 65(Pt 2):159-62. PubMed ID: 19194010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]