These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30831426)

  • 1. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation.
    Ramachandran A; Oyarzun DI; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2019 May; 155():76-85. PubMed ID: 30831426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes.
    Son M; Pothanamkandathil V; Yang W; Vrouwenvelder JS; Gorski CA; Logan BE
    Environ Sci Technol; 2020 Mar; 54(6):3628-3635. PubMed ID: 32092271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process design tools and techno-economic analysis for capacitive deionization.
    Hasseler TD; Ramachandran A; Tarpeh WA; Stadermann M; Santiago JG
    Water Res; 2020 Sep; 183():116034. PubMed ID: 32736269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical framework for designing a desalination plant based on membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2019 Jul; 158():359-369. PubMed ID: 31055016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination.
    Zhang C; Wu L; Ma J; Pham AN; Wang M; Waite TD
    Environ Sci Technol; 2019 Nov; 53(22):13364-13373. PubMed ID: 31657549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance metrics for the objective assessment of capacitive deionization systems.
    Hawks SA; Ramachandran A; Porada S; Campbell PG; Suss ME; Biesheuvel PM; Santiago JG; Stadermann M
    Water Res; 2019 Apr; 152():126-137. PubMed ID: 30665159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy consumption in capacitive deionization - Constant current versus constant voltage operation.
    Dykstra JE; Porada S; van der Wal A; Biesheuvel PM
    Water Res; 2018 Oct; 143():367-375. PubMed ID: 29986246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy recovery in membrane capacitive deionization.
    Długołęcki P; van der Wal A
    Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations.
    He Z; Liu S; Lian B; Fletcher J; Bales C; Wang Y; Waite TD
    Water Res; 2021 Oct; 204():117646. PubMed ID: 34543974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology.
    Martinez J; Colán M; Castillón R; Ramos PG; Paria R; Sánchez L; Rodríguez JM
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Consumption in Capacitive Deionization for Desalination: A Review.
    Jiang Y; Jin L; Wei D; Alhassan SI; Wang H; Chai L
    Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies.
    Hand S; Shang X; Guest JS; Smith KC; Cusick RD
    Environ Sci Technol; 2019 Apr; 53(7):3748-3756. PubMed ID: 30821148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes.
    Bhat AP; Reale ER; Del Cerro M; Smith KC; Cusick RD
    Water Res X; 2019 Apr; 3():100027. PubMed ID: 31193985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes.
    Kim C; Lee J; Srimuk P; Aslan M; Presser V
    ChemSusChem; 2017 Dec; 10(24):4914-4920. PubMed ID: 28685992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automation of membrane capacitive deionization process using reinforcement learning.
    Yoon N; Park S; Son M; Cho KH
    Water Res; 2022 Dec; 227():119337. PubMed ID: 36370591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration.
    Ma J; Ma J; Zhang C; Song J; Dong W; Waite TD
    Water Res; 2020 Jan; 168():115186. PubMed ID: 31655437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.