These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 30831473)
1. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Zhu Y; Yin J; Liang Y; Liu J; Jia J; Huo H; Wu Z; Yang R; Gong H Ecotoxicol Environ Saf; 2019 Jun; 174():245-254. PubMed ID: 30831473 [TBL] [Abstract][Full Text] [Related]
2. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Zhu YX; Xu XB; Hu YH; Han WH; Yin JL; Li HL; Gong HJ Plant Cell Rep; 2015 Sep; 34(9):1629-46. PubMed ID: 26021845 [TBL] [Abstract][Full Text] [Related]
3. Effects of exogenous 5-aminolevulinic acid on PIP1 and NIP aquaporin gene expression in seedlings of cucumber cultivars subjected to salinity stress. Yan F; Qu D; Zhao YY; Hu XH; Zhao ZY; Zhang Y; Zou ZR Genet Mol Res; 2014 Jan; 13(2):2563-73. PubMed ID: 24535911 [TBL] [Abstract][Full Text] [Related]
4. CsSHMT3 gene enhances the growth and development in cucumber seedlings under salt stress. Zhang Z; Hou X; Gao R; Li Y; Ding Z; Huang Y; Yao K; Yao Y; Liang C; Liao W Plant Mol Biol; 2024 May; 114(3):52. PubMed ID: 38696020 [TBL] [Abstract][Full Text] [Related]
5. The CsGPA1-CsAQPs module is essential for salt tolerance of cucumber seedlings. Yan Y; Sun M; Li Y; Wang J; He C; Yu X Plant Cell Rep; 2020 Oct; 39(10):1301-1316. PubMed ID: 32648011 [TBL] [Abstract][Full Text] [Related]
6. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Yin J; Jia J; Lian Z; Hu Y; Guo J; Huo H; Zhu Y; Gong H Ecotoxicol Environ Saf; 2019 Mar; 169():8-17. PubMed ID: 30412897 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Sang T; Shan X; Li B; Shu S; Sun J; Guo S Plant Cell Rep; 2016 Aug; 35(8):1769-82. PubMed ID: 27351994 [TBL] [Abstract][Full Text] [Related]
8. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Zhu Y; Jiang X; Zhang J; He Y; Zhu X; Zhou X; Gong H; Yin J; Liu Y Plant Physiol Biochem; 2020 Nov; 156():209-220. PubMed ID: 32977177 [TBL] [Abstract][Full Text] [Related]
9. Heme is involved in the exogenous ALA-promoted growth and antioxidant defense system of cucumber seedlings under salt stress. Wu Y; Li J; Wang J; Dawuda MM; Liao W; Meng X; Yuan H; Xie J; Tang Z; Lyu J; Yu J BMC Plant Biol; 2022 Jul; 22(1):329. PubMed ID: 35804328 [TBL] [Abstract][Full Text] [Related]
10. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Farouk S; Elhindi KM; Alotaibi MA Ecotoxicol Environ Saf; 2020 Dec; 206():111396. PubMed ID: 33039852 [TBL] [Abstract][Full Text] [Related]
11. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Yin L; Wang S; Tanaka K; Fujihara S; Itai A; Den X; Zhang S Plant Cell Environ; 2016 Feb; 39(2):245-58. PubMed ID: 25753986 [TBL] [Abstract][Full Text] [Related]
12. Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. Shu S; Chen L; Lu W; Sun J; Guo S; Yuan Y; Li J J Plant Res; 2014 Nov; 127(6):763-73. PubMed ID: 25069716 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. Song Q; Joshi M; Joshi V Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408 [TBL] [Abstract][Full Text] [Related]
14. Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Sarwar M; Anjum S; Ali Q; Alam MW; Haider MS; Mehboob W Sci Rep; 2021 Dec; 11(1):24504. PubMed ID: 34969963 [TBL] [Abstract][Full Text] [Related]
15. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. Zhao W; Yang X; Yu H; Jiang W; Sun N; Liu X; Liu X; Zhang X; Wang Y; Gu X Plant Cell Physiol; 2015 Mar; 56(3):455-67. PubMed ID: 25432971 [TBL] [Abstract][Full Text] [Related]
16. Humic acid and grafting as sustainable agronomic practices for increased growth and secondary metabolism in cucumber subjected to salt stress. Amerian M; Palangi A; Gohari G; Ntatsi G Sci Rep; 2024 Jul; 14(1):15883. PubMed ID: 38987579 [TBL] [Abstract][Full Text] [Related]
17. Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber. Wu X; Shu S; Wang Y; Yuan R; Guo S Photosynth Res; 2019 Sep; 141(3):303-314. PubMed ID: 31004254 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system. Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166 [TBL] [Abstract][Full Text] [Related]
19. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. Janicka-Russak M; Kabała K; Wdowikowska A; Kłobus G J Plant Physiol; 2013 Jul; 170(10):915-22. PubMed ID: 23499455 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet. Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]