These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30831757)

  • 1. A 3D-printed broadband millimeter wave absorber.
    Petroff M; Appel J; Rostem K; Bennett CL; Eimer J; Marriage T; Ramirez J; Wollack EJ
    Rev Sci Instrum; 2019 Feb; 90(2):024701. PubMed ID: 30831757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multimode, broadband and all-inkjet-printed absorber using characteristic mode analysis.
    Zha D; Dong J; Cao Z; Zhang Y; He F; Li R; He Y; Miao L; Bie S; Jiang J
    Opt Express; 2020 Mar; 28(6):8609-8618. PubMed ID: 32225482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an epoxy-based millimeter absorber with expanded polystyrenes and carbon black for an astronomical telescope.
    Inoue Y; Hasegawa M; Hazumi M; Takada S; Tomaru T
    Appl Opt; 2023 Feb; 62(5):1419-1427. PubMed ID: 36821247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Low-Cost Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Carbon-Loaded Acrylonitrile Butadiene Styrene Polymer.
    Ren J; Yin JY
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of a Magnetic Composite Flexible Filament and Optimization of a 3D Printed Wideband Electromagnetic Multilayer Absorber in X-Ku Frequency Bands.
    Vong C; Chevalier A; Maalouf A; Ville J; Rosnarho JF; Laur V
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed λ/4 phase plate for broadband microwave applications.
    Wu Y; Grant PS; Isakov D
    Opt Express; 2018 Oct; 26(22):29068-29073. PubMed ID: 30470077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production method of millimeter-wave absorber with 3D-printed mold.
    Adachi S; Hattori M; Kanno F; Kiuchi K; Okada T; Tajima O
    Rev Sci Instrum; 2020 Jan; 91(1):016103. PubMed ID: 32012552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object.
    Kim HK; Ling K; Kim K; Lim S
    Opt Express; 2015 Mar; 23(5):5898-906. PubMed ID: 25836816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctionality of Additively Manufactured Kelvin Foam for Electromagnetic Wave Absorption and Load Bearing.
    Lee J; Lim DD; Park J; Lee J; Noh D; Gu GX; Choi W
    Small; 2023 Dec; 19(50):e2305005. PubMed ID: 37688312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and fabrication of multi-material broadband electromagnetic absorbers for use in cavity-backed antennas.
    Gupta E; Bonner C; Muhammed F; McParland K; Mirotznik M
    Heliyon; 2023 Mar; 9(3):e14164. PubMed ID: 36967905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure.
    Fan J; Xiao D; Wang Q; Liu Q; Ouyang Z
    Appl Opt; 2017 May; 56(15):4388-4391. PubMed ID: 29047867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material survey for a millimeter-wave absorber using a 3D-printed mold.
    Otsuka T; Adachi S; Hattori M; Sakurai Y; Tajima O
    Appl Opt; 2021 Sep; 60(25):7678-7685. PubMed ID: 34613254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband Tunability of Polarization-Insensitive Absorber Based on Frequency Selective Surface.
    Wang H; Kong P; Cheng W; Bao W; Yu X; Miao L; Jiang J
    Sci Rep; 2016 Mar; 6():23081. PubMed ID: 26983804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible 3D Printed Conductive Metamaterial Units for Electromagnetic Applications in Microwaves.
    Tasolamprou AC; Mentzaki D; Viskadourakis Z; Economou EN; Kafesaki M; Kenanakis G
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber.
    Fang J; Liu T; Chen Z; Wang Y; Wei W; Yue X; Jiang Z
    Nanoscale; 2016 Apr; 8(16):8899-909. PubMed ID: 27072200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband microwave absorption utilizing water-based metamaterial structures.
    Zhao J; Wei S; Wang C; Chen K; Zhu B; Jiang T; Feng Y
    Opt Express; 2018 Apr; 26(7):8522-8531. PubMed ID: 29715818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband terahertz metamaterial absorber based on sectional asymmetric structures.
    Gong C; Zhan M; Yang J; Wang Z; Liu H; Zhao Y; Liu W
    Sci Rep; 2016 Aug; 6():32466. PubMed ID: 27571941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of 220/280 GHz Multichroic Feedhorn-Coupled TES Polarimeter.
    Walker S; Sierra CE; Austermann JE; Beall JA; Becker DT; Dober BJ; Duff SM; Hilton GC; Hubmayr J; Van Lanen JL; McMahon JJ; Simon SM; Ullom JN; Vissers MR
    J Low Temp Phys; 2020; 199(3-4):. PubMed ID: 33487736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrometer for the 70-102 GHz region.
    Park GB; Steeves AH; Kuyanov-Prozument K; Neill JL; Field RW
    J Chem Phys; 2011 Jul; 135(2):024202. PubMed ID: 21766933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.