These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46. Microfabricated sampling probes for in vivo monitoring of neurotransmitters. Lee WH; Slaney TR; Hower RW; Kennedy RT Anal Chem; 2013 Apr; 85(8):3828-31. PubMed ID: 23547793 [TBL] [Abstract][Full Text] [Related]
47. Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication. Weltman A; Yoo J; Meng E Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404353 [TBL] [Abstract][Full Text] [Related]
48. In vivo performance of a microelectrode neural probe with integrated drug delivery. Rohatgi P; Langhals NB; Kipke DR; Patil PG Neurosurg Focus; 2009 Jul; 27(1):E8. PubMed ID: 19569896 [TBL] [Abstract][Full Text] [Related]
49. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
50. Open source silicon microprobes for high throughput neural recording. Yang L; Lee K; Villagracia J; Masmanidis SC J Neural Eng; 2020 Jan; 17(1):016036. PubMed ID: 31731284 [TBL] [Abstract][Full Text] [Related]
51. Fabrication of a Multilayer Implantable Cortical Microelectrode Probe to Improve Recording Potential. Liu X; Bibineyshvili Y; Robles DA; Boreland AJ; Margolis DJ; Shreiber DI; Zahn JD J Microelectromech Syst; 2021; 30(4):569-581. PubMed ID: 34539168 [TBL] [Abstract][Full Text] [Related]
52. High-density electrophysiological recordings in macaque using a chronically implanted 128-channel passive silicon probe. Klein L; Pothof F; Raducanu BC; Klon-Lipok J; Shapcott KA; Musa S; Andrei A; Aarts AA; Paul O; Singer W; Ruther P J Neural Eng; 2020 Apr; 17(2):026036. PubMed ID: 32217819 [TBL] [Abstract][Full Text] [Related]
53. Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Fiáth R; Hofer KT; Csikós V; Horváth D; Nánási T; Tóth K; Pothof F; Böhler C; Asplund M; Ruther P; Ulbert I Biomed Tech (Berl); 2018 Jun; 63(3):301-315. PubMed ID: 29478038 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording. Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295 [TBL] [Abstract][Full Text] [Related]
55. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827 [TBL] [Abstract][Full Text] [Related]
56. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation. Guan S; Tian H; Yang Y; Liu M; Ding J; Wang J; Fang Y Nat Protoc; 2023 Jun; 18(6):1712-1744. PubMed ID: 37248393 [TBL] [Abstract][Full Text] [Related]
57. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023 [TBL] [Abstract][Full Text] [Related]
58. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces. Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084 [TBL] [Abstract][Full Text] [Related]
59. Progress in Research of Flexible MEMS Microelectrodes for Neural Interface. Tang LJ; Wang MH; Tian HC; Kang XY; Hong W; Liu JQ Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400473 [TBL] [Abstract][Full Text] [Related]