These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30832357)

  • 61. A high-yield microassembly structure for three-dimensional microelectrode arrays.
    Bai Q; Wise KD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):281-9. PubMed ID: 10743769
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Precise Tubular Braid Structures of Ultrafine Microwires as Neural Probes: Significantly Reduced Chronic Immune Response and Greater Local Neural Survival in Rat Cortex.
    Kim T; Zhong Y; Giszter SF
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):846-856. PubMed ID: 30998475
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Novel multi-sided, microelectrode arrays for implantable neural applications.
    Seymour JP; Langhals NB; Anderson DJ; Kipke DR
    Biomed Microdevices; 2011 Jun; 13(3):441-51. PubMed ID: 21301965
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design and fabrication of a flexible substrate microelectrode array for brain machine interfaces.
    Patrick E; Ordonez M; Alba N; Sanchez JC; Nishida T
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2966-9. PubMed ID: 17946151
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo.
    Shin H; Son Y; Chae U; Kim J; Choi N; Lee HJ; Woo J; Cho Y; Yang SH; Lee CJ; Cho IJ
    Nat Commun; 2019 Aug; 10(1):3777. PubMed ID: 31439845
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A three-dimensional microelectrode array for chronic neural recording.
    Hoogerwerf AC; Wise KD
    IEEE Trans Biomed Eng; 1994 Dec; 41(12):1136-46. PubMed ID: 7851915
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Titanium-based multi-channel, micro-electrode array for recording neural signals.
    McCarthy PT; Madangopal R; Otto KJ; Rao MP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2062-5. PubMed ID: 19964778
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation.
    Nimbalkar S; Samejima S; Dang V; Hunt T; Nunez O; Moritz C; Kassegne S
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34492644
    [No Abstract]   [Full Text] [Related]  

  • 70. Microfabricated Probes for Studying Brain Chemistry: A Review.
    Ngernsutivorakul T; White TS; Kennedy RT
    Chemphyschem; 2018 May; 19(10):1128-1142. PubMed ID: 29405568
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex.
    Black BJ; Kanneganti A; Joshi-Imre A; Rihani R; Chakraborty B; Abbott J; Pancrazio JJ; Cogan SF
    J Neurophysiol; 2018 Oct; 120(4):2083-2090. PubMed ID: 30020844
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings.
    Kozai TD; Catt K; Du Z; Na K; Srivannavit O; Haque RU; Seymour J; Wise KD; Yoon E; Cui XT
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):111-9. PubMed ID: 26087481
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays.
    Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT
    J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microengineered neural probes for in vivo recording.
    Valles KD
    Methods Mol Biol; 2010; 583():135-48. PubMed ID: 19763463
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Active floating micro electrode arrays (AFMA).
    Kim T; Troyk PR; Bak M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2807-10. PubMed ID: 17946982
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces.
    Shi J; Fang Y
    Adv Mater; 2019 Nov; 31(45):e1804895. PubMed ID: 30300442
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.