These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30832392)

  • 21. Sleep disruption and motor development: Does pulling-to-stand impacts sleep-wake regulation?
    Atun-Einy O; Scher A
    Infant Behav Dev; 2016 Feb; 42():36-44. PubMed ID: 26704990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Addressing the challenges of sleep/wake class imbalance in bed based non-contact actigraphic recordings of sleep.
    McDowell A; Donnelly MP; Nugent CD; Galway L; McGrath MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4654-7. PubMed ID: 24110772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Criteria for nap identification in infants and young children using 24-h actigraphy and agreement with parental diary.
    Galland B; Meredith-Jones K; Gray A; Sayers R; Lawrence J; Taylor B; Taylor R
    Sleep Med; 2016 Mar; 19():85-92. PubMed ID: 27198952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What is segmented sleep? Actigraphy field validation for daytime sleep and nighttime wake.
    Samson DR; Yetish GM; Crittenden AN; Mabulla IA; Mabulla AZP; Nunn CL
    Sleep Health; 2016 Dec; 2(4):341-347. PubMed ID: 29073393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infant nocturnal wakefulness: a longitudinal study comparing three sleep assessment methods.
    Tikotzky L; Volkovich E
    Sleep; 2019 Jan; 42(1):. PubMed ID: 30285147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuity and change in infants' sleep from 8 to 14 months: a longitudinal actigraphy study.
    Scher A
    Infant Behav Dev; 2012 Dec; 35(4):870-5. PubMed ID: 23007096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity-based sleep-wake identification in infants.
    Sazonov E; Sazonova N; Schuckers S; Neuman M;
    Physiol Meas; 2004 Oct; 25(5):1291-304. PubMed ID: 15535193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic sleep-wake and nap analysis with a new wrist worn online activity monitoring device vivago WristCare.
    Lötjönen J; Korhonen I; Hirvonen K; Eskelinen S; Myllymäki M; Partinen M
    Sleep; 2003 Feb; 26(1):86-90. PubMed ID: 12627738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalized Camera-Based Infant Sleep-Wake Monitoring in NICUs: A Multi-Center Clinical Trial.
    Huang D; Yu D; Zeng Y; Song X; Pan L; He J; Ren L; Yang J; Lu H; Wang W
    IEEE J Biomed Health Inform; 2024 May; 28(5):3015-3028. PubMed ID: 38446652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving sleep/wake detection via boundary adaptation for respiratory spectral features.
    Long X; Haakma R; Rolink J; Fonseca P; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():374-7. PubMed ID: 26736277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiration amplitude analysis for REM and NREM sleep classification.
    Long X; Foussier J; Fonseca P; Haakma R; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5017-20. PubMed ID: 24110862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient embedded sleep wake classification for open-source actigraphy.
    Banfi T; Valigi N; di Galante M; d'Ascanio P; Ciuti G; Faraguna U
    Sci Rep; 2021 Jan; 11(1):345. PubMed ID: 33431918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonal effect on infants' sleep regulation: a preliminary study in a Mediterranean climate.
    Cohen D; Atun-Einy O; Scher A
    Chronobiol Int; 2012 Dec; 29(10):1352-7. PubMed ID: 23130939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of an innovative method, based on tilt sensing, for the assessment of activity and body position.
    Bonmati-Carrion MA; Middleton B; Revell VL; Skene DJ; Rol MA; Madrid JA
    Chronobiol Int; 2015 Jun; 32(5):701-10. PubMed ID: 25839208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sleep and wakefulness state detection in nocturnal actigraphy based on movement information.
    Domingues A; Paiva T; Sanches JM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):426-34. PubMed ID: 24013826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A preliminary study on the performance of the Nanit auto-videosomnography scoring system against observed video scoring and actigraphy to estimate sleep-wake states in infants.
    Tikotzky L; Ran-Peled D; Ben-Zion H
    Sleep Health; 2023 Oct; 9(5):611-617. PubMed ID: 37716834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimum duration of actigraphy-defined nocturnal awakenings necessary for morning recall.
    Winser MA; McBean AL; Montgomery-Downs HE
    Sleep Med; 2013 Jul; 14(7):688-91. PubMed ID: 23746600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neural Networks.
    Sano A; Chen W; Lopez-Martinez D; Taylor S; Picard RW
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1607-1617. PubMed ID: 30176613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-contact Sleep/Wake Monitoring Using Impulse-Radio Ultrawideband Radar in Neonates.
    Lee WH; Kim SH; Na JY; Lim YH; Cho SH; Cho SH; Park HK
    Front Pediatr; 2021; 9():782623. PubMed ID: 34993163
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of sleep/wake history and circadian phase on proposed pilot fatigue safety performance indicators.
    Gander PH; Mulrine HM; van den Berg MJ; Smith AA; Signal TL; Wu LJ; Belenky G
    J Sleep Res; 2015 Feb; 24(1):110-9. PubMed ID: 25082509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.