BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30832478)

  • 21. MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells.
    Ge Y; Xian J; Kang M; Li X; Jin M
    Comput Math Methods Med; 2016; 2016():2787382. PubMed ID: 27446233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Periodic pulses of calcium ions in a chemical system.
    Kurin-Csörgei K; Epstein IR; Orban M
    J Phys Chem A; 2006 Jun; 110(24):7588-92. PubMed ID: 16774201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concentration-gradient-dependent ion current rectification in charged conical nanopores.
    Cao L; Guo W; Wang Y; Jiang L
    Langmuir; 2012 Jan; 28(4):2194-9. PubMed ID: 22148901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionic conduction, rectification, and selectivity in single conical nanopores.
    Cervera J; Schiedt B; Neumann R; Mafé S; Ramírez P
    J Chem Phys; 2006 Mar; 124(10):104706. PubMed ID: 16542096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge regulation in nanopore ionic field-effect transistors.
    Jiang Z; Stein D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031203. PubMed ID: 21517487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic selectivity of single nanochannels.
    Vlassiouk I; Smirnov S; Siwy Z
    Nano Lett; 2008 Jul; 8(7):1978-85. PubMed ID: 18558784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.
    Zeng Z; Ai Y; Qian S
    Phys Chem Chem Phys; 2014 Feb; 16(6):2465-74. PubMed ID: 24358472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.
    Qian S; Joo SW; Ai Y; Cheney MA; Hou W
    J Colloid Interface Sci; 2009 Jan; 329(2):376-83. PubMed ID: 18977486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and simulation of nanoparticle separation through a solid-state nanopore.
    Jubery TZ; Prabhu AS; Kim MJ; Dutta P
    Electrophoresis; 2012 Jan; 33(2):325-33. PubMed ID: 22222977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of electrostatic correlations on the ionic current rectification in conical nanopores.
    Alidoosti E; Zhao H
    Electrophoresis; 2019 Oct; 40(20):2655-2661. PubMed ID: 31206777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrokinetic particle translocation through a nanopore.
    Ai Y; Qian S
    Phys Chem Chem Phys; 2011 Mar; 13(9):4060-71. PubMed ID: 21229154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore.
    Chaudhry JH; Comer J; Aksimentiev A; Olson LN
    Commun Comput Phys; 2014 Jan; 15(1):. PubMed ID: 24363784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial profiles of potential, ion concentration and flux in short unipolar and bipolar nanopores.
    Tajparast M; Virdi G; Glavinović MI
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2138-53. PubMed ID: 26079796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport.
    Ramírez P; Mafé S; Aguilella VM; Alcaraz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011910. PubMed ID: 12935179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.
    Liu L; Li C; Ma J; Wu Y; Ni Z; Chen Y
    IET Nanobiotechnol; 2014 Dec; 8(4):247-56. PubMed ID: 25429504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores.
    Ali M; Ahmed I; Nasir S; Ramirez P; Niemeyer CM; Mafe S; Ensinger W
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19541-5. PubMed ID: 26310320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable Nanopore Arrays as the Basis for Ionic Circuits.
    Lucas RA; Siwy ZS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56622-56631. PubMed ID: 33283510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA nanowire translocation phenomena in nanopores.
    Chen L; Conlisk AT
    Biomed Microdevices; 2010 Apr; 12(2):235-45. PubMed ID: 19943114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionic Conduction in Biological Nanopores Created by Ultrashort9 High-Intensity Pulses.
    Qiu H; Wang X; Choi A; Xie F; Zhao W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.