These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 30832582)
1. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. Silvestri A; Fiorilli V; Miozzi L; Accotto GP; Turina M; Lanfranco L BMC Genomics; 2019 Mar; 20(1):169. PubMed ID: 30832582 [TBL] [Abstract][Full Text] [Related]
2. Different Genetic Sources Contribute to the Small RNA Population in the Arbuscular Mycorrhizal Fungus Silvestri A; Turina M; Fiorilli V; Miozzi L; Venice F; Bonfante P; Lanfranco L Front Microbiol; 2020; 11():395. PubMed ID: 32231650 [TBL] [Abstract][Full Text] [Related]
3. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. Tsuzuki S; Handa Y; Takeda N; Kawaguchi M Mol Plant Microbe Interact; 2016 Apr; 29(4):277-86. PubMed ID: 26757243 [TBL] [Abstract][Full Text] [Related]
4. A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis. Ledford WC; Silvestri A; Fiorilli V; Roth R; Rubio-Somoza I; Lanfranco L New Phytol; 2024 May; 242(4):1534-1544. PubMed ID: 37985403 [TBL] [Abstract][Full Text] [Related]
5. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota. Lee SJ; Kong M; Harrison P; Hijri M Genome Biol Evol; 2018 Jan; 10(1):328-343. PubMed ID: 29329439 [TBL] [Abstract][Full Text] [Related]
6. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592 [TBL] [Abstract][Full Text] [Related]
7. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
8. Host-Induced Gene Silencing of Arbuscular Mycorrhizal Fungal Genes via Agrobacterium rhizogenes-Mediated Root Transformation in Medicago truncatula. Hartmann M; Voß S; Requena N Methods Mol Biol; 2020; 2146():239-248. PubMed ID: 32415608 [TBL] [Abstract][Full Text] [Related]
9. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. Cope KR; Kafle A; Yakha JK; Pfeffer PE; Strahan GD; Garcia K; Subramanian S; Bücking H Mycorrhiza; 2022 Jul; 32(3-4):281-303. PubMed ID: 35511363 [TBL] [Abstract][Full Text] [Related]
10. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Devers EA; Branscheid A; May P; Krajinski F Plant Physiol; 2011 Aug; 156(4):1990-2010. PubMed ID: 21571671 [TBL] [Abstract][Full Text] [Related]
11. In Medicago truncatula, water deficit modulates the transcript accumulation of components of small RNA pathways. Capitão C; Paiva JA; Santos DM; Fevereiro P BMC Plant Biol; 2011 May; 11():79. PubMed ID: 21569262 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L. Hu Y; Wu S; Sun Y; Li T; Zhang X; Chen C; Lin G; Chen B Mycorrhiza; 2015 Feb; 25(2):131-42. PubMed ID: 25033924 [TBL] [Abstract][Full Text] [Related]
14. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Zeng T; Holmer R; Hontelez J; Te Lintel-Hekkert B; Marufu L; de Zeeuw T; Wu F; Schijlen E; Bisseling T; Limpens E Plant J; 2018 May; 94(3):411-425. PubMed ID: 29570877 [TBL] [Abstract][Full Text] [Related]
15. Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant. Cardini A; Pellegrino E; Declerck S; Calonne-Salmon M; Mazzolai B; Ercoli L Environ Microbiol; 2021 Oct; 23(10):5883-5900. PubMed ID: 33913577 [TBL] [Abstract][Full Text] [Related]
16. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis. Laparre J; Malbreil M; Letisse F; Portais JC; Roux C; Bécard G; Puech-Pagès V Mol Plant; 2014 Mar; 7(3):554-66. PubMed ID: 24121293 [TBL] [Abstract][Full Text] [Related]
17. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
18. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. Suzaki T; Takeda N; Nishida H; Hoshino M; Ito M; Misawa F; Handa Y; Miura K; Kawaguchi M PLoS Genet; 2019 Jan; 15(1):e1007865. PubMed ID: 30605473 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Casieri L; Gallardo K; Wipf D Planta; 2012 Jun; 235(6):1431-47. PubMed ID: 22535379 [TBL] [Abstract][Full Text] [Related]
20. The ectomycorrhizal fungus Wong-Bajracharya J; Singan VR; Monti R; Plett KL; Ng V; Grigoriev IV; Martin FM; Anderson IC; Plett JM Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35012977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]