These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30832839)

  • 21. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.
    Yeo M; Ha J; Lee H; Kim G
    Acta Biomater; 2016 Jul; 38():33-43. PubMed ID: 27095485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review.
    Pérez B; Nykvist H; Brøgger AF; Larsen MB; Falkeborg MF
    Food Chem; 2019 Jul; 287():249-257. PubMed ID: 30857696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Printing by Multiphase Silicone/Water Capillary Inks.
    Roh S; Parekh DP; Bharti B; Stoyanov SD; Velev OD
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28590510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of Cellulose Nanocrystal Alignment during 3D Printing.
    Hausmann MK; Rühs PA; Siqueira G; Läuger J; Libanori R; Zimmermann T; Studart AR
    ACS Nano; 2018 Jul; 12(7):6926-6937. PubMed ID: 29975510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites.
    Lamm ME; Wang L; Kishore V; Tekinalp H; Kunc V; Wang J; Gardner DJ; Ozcan S
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32957494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct Ink Writing of Phenylethynyl End-Capped Oligoimide/SiO
    Li K; Ding J; Guo Y; Wu H; Wang W; Ji J; Pei Q; Gong C; Ji Z; Wang X
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels.
    Melilli G; Carmagnola I; Tonda-Turo C; Pirri F; Ciardelli G; Sangermano M; Hakkarainen M; Chiappone A
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Additive-Free and Support-Free 3D Printing of Thermosetting Polymers with Isotropic Mechanical Properties.
    Mahmoudi M; Burlison SR; Moreno S; Minary-Jolandan M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5529-5538. PubMed ID: 33476138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension.
    Jin Y; Song K; Gellermann N; Huang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29207-29217. PubMed ID: 31333016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment.
    Chen Z; Khuu N; Xu F; Kheiri S; Yakavets I; Rakhshani F; Morozova S; Kumacheva E
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures.
    Li VC; Dunn CK; Zhang Z; Deng Y; Qi HJ
    Sci Rep; 2017 Aug; 7(1):8018. PubMed ID: 28808235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nozzle Shape Guided Filler Orientation in 3D Printed Photo-curable Nanocomposites.
    Kim T; Trangkanukulkij R; Kim WS
    Sci Rep; 2018 Feb; 8(1):3805. PubMed ID: 29491445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Embedded 3D Printing of Thermally-Cured Thermoset Elastomers and the Interdependence of Rheology and Machine Pathing.
    Stang M; Tashman J; Shiwarski D; Yang H; Yao L; Feinberg A
    Adv Mater Technol; 2023 Feb; 8(3):. PubMed ID: 36817013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dual nozzle 3D printing system for super soft composite hydrogels.
    Dine A; Bentley E; PoulmarcK LA; Dini D; Forte AE; Tan Z
    HardwareX; 2021 Apr; 9():e00176. PubMed ID: 35492040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulated filament shapes in embedded 3D printing.
    Friedrich LM; Seppala JE
    Soft Matter; 2021 Sep; 17(35):8027-8046. PubMed ID: 34297018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D structure of lightweight, conductive cellulose nanofiber foam.
    Lee H; Kim S; Shin S; Hyun J
    Carbohydr Polym; 2021 Feb; 253():117238. PubMed ID: 33278994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs.
    Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM
    Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release.
    Yang Y; Wang H; Li H; Ou Z; Yang G
    Eur J Pharm Sci; 2018 Mar; 115():11-18. PubMed ID: 29305984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.