These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 30833164)

  • 41. Machine learning based natural language processing of radiology reports in orthopaedic trauma.
    Olthof AW; Shouche P; Fennema EM; IJpma FFA; Koolstra RHC; Stirler VMA; van Ooijen PMA; Cornelissen LJ
    Comput Methods Programs Biomed; 2021 Sep; 208():106304. PubMed ID: 34333208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extraction of radiographic findings from unstructured thoracoabdominal computed tomography reports using convolutional neural network based natural language processing.
    Pandey M; Xu Z; Sholle E; Maliakal G; Singh G; Fatima Z; Larine D; Lee BC; Wang J; van Rosendael AR; Baskaran L; Shaw LJ; Min JK; Al'Aref SJ
    PLoS One; 2020; 15(7):e0236827. PubMed ID: 32730362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Natural Language Processing in Radiology: Update on Clinical Applications.
    López-Úbeda P; Martín-Noguerol T; Juluru K; Luna A
    J Am Coll Radiol; 2022 Nov; 19(11):1271-1285. PubMed ID: 36029890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Practical Guide to Natural Language Processing for Radiology.
    Mozayan A; Fabbri AR; Maneevese M; Tocino I; Chheang S
    Radiographics; 2021; 41(5):1446-1453. PubMed ID: 34469212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation.
    Shan QY; Hu HT; Feng ST; Peng ZP; Chen SL; Zhou Q; Li X; Xie XY; Lu MD; Wang W; Kuang M
    Cancer Imaging; 2019 Feb; 19(1):11. PubMed ID: 30813956
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natural Language Processing of Radiology Reports to Detect Complications of Ischemic Stroke.
    Miller MI; Orfanoudaki A; Cronin M; Saglam H; So Yeon Kim I; Balogun O; Tzalidi M; Vasilopoulos K; Fanaropoulou G; Fanaropoulou NM; Kalin J; Hutch M; Prescott BR; Brush B; Benjamin EJ; Shin M; Mian A; Greer DM; Smirnakis SM; Ong CJ
    Neurocrit Care; 2022 Aug; 37(Suppl 2):291-302. PubMed ID: 35534660
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasound surveillance for hepatocellular carcinoma: service evaluation of a radiology-led recall system in a tertiary-referral centre for liver diseases in the UK.
    Farrell C; Halpen A; Cross TJ; Richardson PD; Johnson P; Joekes EC
    Clin Radiol; 2017 Apr; 72(4):338.e11-338.e17. PubMed ID: 28041651
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural language processing to identify ureteric stones in radiology reports.
    Li AY; Elliot N
    J Med Imaging Radiat Oncol; 2019 Jun; 63(3):307-310. PubMed ID: 30720244
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using Natural Language Processing to Predict Fatal Drug Overdose From Autopsy Narrative Text: Algorithm Development and Validation Study.
    Tang LA; Korona-Bailey J; Zaras D; Roberts A; Mukhopadhyay S; Espy S; Walsh CG
    JMIR Public Health Surveill; 2023 May; 9():e45246. PubMed ID: 37204824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating Methods to Increase LI-RADS Utilization in an Academic Radiology Department.
    McCann MR; Ayoob A; Hatfield W; Owen JW; Nair RT; Ganesh H; Lee JT
    J Am Coll Radiol; 2019 Sep; 16(9 Pt A):1165-1168. PubMed ID: 30975610
    [No Abstract]   [Full Text] [Related]  

  • 52. Patterns of Metastatic Disease in Patients with Cancer Derived from Natural Language Processing of Structured CT Radiology Reports over a 10-year Period.
    Do RKG; Lupton K; Causa Andrieu PI; Luthra A; Taya M; Batch K; Nguyen H; Rahurkar P; Gazit L; Nicholas K; Fong CJ; Gangai N; Schultz N; Zulkernine F; Sevilimedu V; Juluru K; Simpson A; Hricak H
    Radiology; 2021 Oct; 301(1):115-122. PubMed ID: 34342503
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients.
    Taggart M; Chapman WW; Steinberg BA; Ruckel S; Pregenzer-Wenzler A; Du Y; Ferraro J; Bucher BT; Lloyd-Jones DM; Rondina MT; Shah RU
    JAMA Netw Open; 2018 Oct; 1(6):e183451. PubMed ID: 30646240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Natural Language Processing for Identification of Incidental Pulmonary Nodules in Radiology Reports.
    Kang SK; Garry K; Chung R; Moore WH; Iturrate E; Swartz JL; Kim DC; Horwitz LI; Blecker S
    J Am Coll Radiol; 2019 Nov; 16(11):1587-1594. PubMed ID: 31132331
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Natural Language Processing in Radiology: A Systematic Review.
    Pons E; Braun LM; Hunink MG; Kors JA
    Radiology; 2016 May; 279(2):329-43. PubMed ID: 27089187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated Detection of Radiology Reports that Require Follow-up Imaging Using Natural Language Processing Feature Engineering and Machine Learning Classification.
    Lou R; Lalevic D; Chambers C; Zafar HM; Cook TS
    J Digit Imaging; 2020 Feb; 33(1):131-136. PubMed ID: 31482317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Natural language processing augments comorbidity documentation in neurosurgical inpatient admissions.
    Sastry RA; Setty A; Liu DD; Zheng B; Ali R; Weil RJ; Roye GD; Doberstein CE; Oyelese AA; Niu T; Gokaslan ZL; Telfeian AE
    PLoS One; 2024; 19(5):e0303519. PubMed ID: 38723044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natural Language Processing and Machine Learning to Enable Clinical Decision Support for Treatment of Pediatric Pneumonia.
    Smith JC; Spann A; McCoy AB; Johnson JA; Arnold DH; Williams DJ; Weitkamp AO
    AMIA Annu Symp Proc; 2020; 2020():1130-1139. PubMed ID: 33936489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep Learning-Based Natural Language Processing in Radiology: The Impact of Report Complexity, Disease Prevalence, Dataset Size, and Algorithm Type on Model Performance.
    Olthof AW; van Ooijen PMA; Cornelissen LJ
    J Med Syst; 2021 Sep; 45(10):91. PubMed ID: 34480231
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preoperative prediction of pathological grading of hepatocellular carcinoma using machine learning-based ultrasomics: A multicenter study.
    Ren S; Qi Q; Liu S; Duan S; Mao B; Chang Z; Zhang Y; Wang S; Zhang L
    Eur J Radiol; 2021 Oct; 143():109891. PubMed ID: 34481117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.