These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30833179)

  • 1. On the determination of the third-order elastic constants of homogeneous isotropic materials utilising Rayleigh waves.
    Mohabuth M; Khanna A; Hughes J; Vidler J; Kotousov A; Ng CT
    Ultrasonics; 2019 Jul; 96():96-103. PubMed ID: 30833179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-acoustoelastic effect of Rayleigh wave: Theory and experimental verification.
    Zeng S; Zhu J; Zhong B; Li X
    Ultrasonics; 2023 May; 131():106948. PubMed ID: 36780767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear interaction of Rayleigh waves in isotropic materials: Numerical and experimental investigation.
    Gartsev S; Zuo P; Rjelka M; Mayer A; Köhler B
    Ultrasonics; 2022 May; 122():106664. PubMed ID: 35144078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustoelastic Lamb wave propagation in biaxially stressed plates.
    Gandhi N; Michaels JE; Lee SJ
    J Acoust Soc Am; 2012 Sep; 132(3):1284-93. PubMed ID: 22978856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves.
    Dodson JC; Inman DJ
    J Acoust Soc Am; 2014 Nov; 136(5):2532-43. PubMed ID: 25373955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large acoustoelastic effect for Lamb waves propagating in an incompressible elastic plate.
    Mohabuth M; Kotousov A; Ng CT
    J Acoust Soc Am; 2019 Mar; 145(3):1221. PubMed ID: 31067922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poro-acoustoelastic constants based on Padé approximation.
    Fu BY; Fu LY
    J Acoust Soc Am; 2017 Nov; 142(5):2890. PubMed ID: 29195418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of thermo-acoustoelastic guided waves by semi-analytical finite element method.
    Yang Z; Liu K; Zhou K; Liang Y; Zhang J; Zheng Y; Gao D; Ma S; Wu Z
    Ultrasonics; 2020 Aug; 106():106141. PubMed ID: 32325302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A note on formulas for the Rayleigh wave speed in elastic solids.
    Sudheer G; Hemanth Lakshmi M; Rao YV
    Ultrasonics; 2017 Jan; 73():82-87. PubMed ID: 27618801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of third-order elastic constants using laser-generated multi-type ultrasound for isotropic materials.
    Dong LM; Lomonosov AM; Shen ZH; Li J; Ni CY; Ni XW
    Ultrasonics; 2013 Aug; 53(6):1079-83. PubMed ID: 23522685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustoelastic effect in stressed heterostructures.
    Osetrov AV; Fröhlich HJ; Koch R; Chilla E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jan; 49(1):94-8. PubMed ID: 11833895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: an alternative to static strain.
    Ellwood R; Stratoudaki T; Sharples SD; Clark M; Somekh MG
    J Acoust Soc Am; 2014 Mar; 135(3):1064-70. PubMed ID: 24606250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unifying model of weakly nonlinear elastic waves; large on large theory.
    Kube CM; Roy A; Jensen DS; Branch DW
    J Acoust Soc Am; 2022 Feb; 151(2):1294. PubMed ID: 35232066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of dynamic elastic constants from the amplitude and velocity of Rayleigh waves.
    Bayón A; Gascón F; Nieves FJ
    J Acoust Soc Am; 2005 Jun; 117(6):3469-77. PubMed ID: 16018451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustoelastic analysis of reflected waves in nearly incompressible, hyper-elastic materials: forward and inverse problems.
    Kobayashi H; Vanderby R
    J Acoust Soc Am; 2007 Feb; 121(2):879-87. PubMed ID: 17348512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the validity of several previously published perturbation formulas for the acoustoelastic effect on Rayleigh waves.
    Mora P; Spies M
    Ultrasonics; 2019 Jan; 91():114-120. PubMed ID: 30092397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate.
    Lee YC; Kuo SH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):114-20. PubMed ID: 14995022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher order longitudinal guided wave modes in axially stressed seven-wire strands.
    Dubuc B; Ebrahimkhanlou A; Salamone S
    Ultrasonics; 2018 Mar; 84():382-391. PubMed ID: 29245118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of third-order elastic constants and applications to loaded structural materials.
    Takahashi S; Motegi R
    Springerplus; 2015; 4():325. PubMed ID: 26180745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved approximation for the Rayleigh wave equation.
    Royer D; Clorennec D
    Ultrasonics; 2007 Mar; 46(1):23-4. PubMed ID: 17098270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.