These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effects of high-frequency transcranial random noise stimulation (hf-tRNS) on global motion processing: An equivalent noise approach. Ghin F; Pavan A; Contillo A; Mather G Brain Stimul; 2018; 11(6):1263-1275. PubMed ID: 30078542 [TBL] [Abstract][Full Text] [Related]
3. Noise in the brain: Transcranial random noise stimulation and perceptual noise act on a stochastic resonance-like mechanism. Battaglini L; Casco C; Fertonani A; Miniussi C; Di Ponzio M; Vicovaro M Eur J Neurosci; 2023 Jun; 57(12):2097-2111. PubMed ID: 36922400 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia. Moret B; Camilleri R; Pavan A; Lo Giudice G; Veronese A; Rizzo R; Campana G Neuropsychologia; 2018 Jun; 114():125-133. PubMed ID: 29704524 [TBL] [Abstract][Full Text] [Related]
5. Contrast detection is enhanced by deterministic, high-frequency transcranial alternating current stimulation with triangle and sine waveform. Potok W; van der Groen O; Sivachelvam S; Bächinger M; Fröhlich F; Kish LB; Wenderoth N J Neurophysiol; 2023 Aug; 130(2):458-473. PubMed ID: 37465880 [TBL] [Abstract][Full Text] [Related]
6. Improvement in visual perception after high-frequency transcranial random noise stimulation (hf-tRNS) in those with migraine: An equivalent noise approach. O'Hare L; Goodwin P; Sharp A; Contillo A; Pavan A Neuropsychologia; 2021 Oct; 161():107990. PubMed ID: 34403655 [TBL] [Abstract][Full Text] [Related]
7. Transcranial Random Noise Stimulation of Visual Cortex: Stochastic Resonance Enhances Central Mechanisms of Perception. van der Groen O; Wenderoth N J Neurosci; 2016 May; 36(19):5289-98. PubMed ID: 27170126 [TBL] [Abstract][Full Text] [Related]
8. Characterising modulatory effects of high-intensity high frequency transcranial random noise stimulation using the perceptual template model. Gotsis ES; van Boxtel JJA; Teufel C; Edwards M; Christensen BK Neuropsychologia; 2023 Dec; 191():108703. PubMed ID: 37858920 [TBL] [Abstract][Full Text] [Related]
9. The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia. Camilleri R; Pavan A; Campana G Neuropsychologia; 2016 Aug; 89():225-231. PubMed ID: 27343685 [TBL] [Abstract][Full Text] [Related]
10. Electrophysiological aftereffects of high-frequency transcranial random noise stimulation (hf-tRNS): an EEG investigation. Ghin F; O'Hare L; Pavan A Exp Brain Res; 2021 Aug; 239(8):2399-2418. PubMed ID: 34105019 [TBL] [Abstract][Full Text] [Related]
11. Transcranial Random Noise Stimulation Acutely Lowers the Response Threshold of Human Motor Circuits. Potok W; Bächinger M; van der Groen O; Cretu AL; Wenderoth N J Neurosci; 2021 Apr; 41(17):3842-3853. PubMed ID: 33737456 [TBL] [Abstract][Full Text] [Related]
12. Stochastic resonance enhances the rate of evidence accumulation during combined brain stimulation and perceptual decision-making. van der Groen O; Tang MF; Wenderoth N; Mattingley JB PLoS Comput Biol; 2018 Jul; 14(7):e1006301. PubMed ID: 30020922 [TBL] [Abstract][Full Text] [Related]
14. Excitatory and inhibitory lateral interactions effects on contrast detection are modulated by tRNS. Battaglini L; Contemori G; Fertonani A; Miniussi C; Coccaro A; Casco C Sci Rep; 2019 Dec; 9(1):19274. PubMed ID: 31848412 [TBL] [Abstract][Full Text] [Related]
15. Rapid Improvement on a Temporal Attention Task within a Single Session of High-frequency Transcranial Random Noise Stimulation. Tyler SC; Contò F; Battelli L J Cogn Neurosci; 2018 May; 30(5):656-666. PubMed ID: 29324073 [TBL] [Abstract][Full Text] [Related]
16. Transcranial Random Noise Stimulation Modulates Neural Processing of Sensory and Motor Circuits, from Potential Cellular Mechanisms to Behavior: A Scoping Review. Potok W; van der Groen O; Bächinger M; Edwards D; Wenderoth N eNeuro; 2022; 9(1):. PubMed ID: 34921057 [TBL] [Abstract][Full Text] [Related]
17. Anisotropies in visual motion perception: a fresh look. Gros BL; Blake R; Hiris E J Opt Soc Am A Opt Image Sci Vis; 1998 Aug; 15(8):2003-11. PubMed ID: 9691484 [TBL] [Abstract][Full Text] [Related]
18. Modulation of Visual Contrast Sensitivity with tRNS across the Visual System, Evidence from Stimulation and Simulation. Potok W; Post A; Beliaeva V; Bächinger M; Cassarà AM; Neufeld E; Polania R; Kiper D; Wenderoth N eNeuro; 2023 Jun; 10(6):. PubMed ID: 37263793 [TBL] [Abstract][Full Text] [Related]
19. Transcranial Random Noise Stimulation (tRNS) Shapes the Processing of Rapidly Changing Auditory Information. Rufener KS; Ruhnau P; Heinze HJ; Zaehle T Front Cell Neurosci; 2017; 11():162. PubMed ID: 28642686 [TBL] [Abstract][Full Text] [Related]
20. Transcranial Random Noise Stimulation Boosts Early Motion Perception Learning Rather than the Later Performance Plateau. Liu N; Wu D; Wang Y; Zhang P; Zhang Y J Cogn Neurosci; 2023 Jun; 35(6):1021-1031. PubMed ID: 36976905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]