BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30833224)

  • 1. A comparison of density-modulus relationships used in finite element modeling of the shoulder.
    Knowles NK; Langohr GDG; Faieghi M; Nelson AJ; Ferreira LM
    Med Eng Phys; 2019 Apr; 66():40-46. PubMed ID: 30833224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material Mapping of QCT-Derived Scapular Models: A Comparison with Micro-CT Loaded Specimens Using Digital Volume Correlation.
    Knowles NK; Kusins J; Faieghi M; Ryan M; Dall'Ara E; Ferreira LM
    Ann Biomed Eng; 2019 Nov; 47(11):2188-2198. PubMed ID: 31297723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a validated glenoid trabecular density-modulus relationship.
    Knowles NK; G Langohr GD; Faieghi M; Nelson A; Ferreira LM
    J Mech Behav Biomed Mater; 2019 Feb; 90():140-145. PubMed ID: 30366304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of QCT-Derived scapula finite element models in predicting local displacements using digital volume correlation.
    Kusins J; Knowles N; Ryan M; Dall'Ara E; Ferreira L
    J Mech Behav Biomed Mater; 2019 Sep; 97():339-345. PubMed ID: 31153115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-field comparisons between strains predicted by QCT-derived finite element models of the scapula and experimental strains measured by digital volume correlation.
    Kusins J; Knowles N; Ryan M; Dall'Ara E; Ferreira L
    J Biomech; 2020 Dec; 113():110101. PubMed ID: 33171355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density.
    Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL
    J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximal Tibia Bone Stiffness and Strength in HR-pQCT- and QCT-Based Finite Element Models.
    Knowles NK; Whittier DE; Besler BA; Boyd SK
    Ann Biomed Eng; 2021 Sep; 49(9):2389-2398. PubMed ID: 33977411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study.
    Choisne J; Valiadis JM; Travert C; Kolta S; Roux C; Skalli W
    J Mech Behav Biomed Mater; 2018 Nov; 87():190-196. PubMed ID: 30077078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2015 Aug; 30(7):703-12. PubMed ID: 26024555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature.
    Knowles NK; Reeves JM; Ferreira LM
    J Exp Orthop; 2016 Dec; 3(1):36. PubMed ID: 27943224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An exclusion approach for addressing partial volume artifacts with quantititive computed tomography-based finite element modeling of the proximal tibia.
    Kalajahi SMH; Nazemi SM; Johnston JD
    Med Eng Phys; 2020 Feb; 76():95-100. PubMed ID: 31870545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis.
    Suzuki T; Matsuura Y; Yamazaki T; Akasaka T; Ozone E; Matsuyama Y; Mukai M; Ohara T; Wakita H; Taniguchi S; Ohtori S
    Bone; 2020 Mar; 132():115212. PubMed ID: 31891786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the vertebral strength using a finite element model derived from low-dose biplanar imaging: benefits of subject-specific material properties.
    Sapin-de Brosses E; Jolivet E; Travert C; Mitton D; Skalli W
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E156-62. PubMed ID: 22290213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties.
    Bevill G; Eswaran SK; Farahmand F; Keaveny TM
    Bone; 2009 Apr; 44(4):573-8. PubMed ID: 19110082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs.
    Luisier B; Dall'Ara E; Pahr DH
    J Mech Behav Biomed Mater; 2014 Apr; 32():287-299. PubMed ID: 24508715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?
    Bauer JS; Sidorenko I; Mueller D; Baum T; Issever AS; Eckstein F; Rummeny EJ; Link TM; Raeth CW
    Eur J Radiol; 2014 Jan; 83(1):e36-42. PubMed ID: 24274992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():1-8. PubMed ID: 27842233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of finite element predicted bone strain in the human metatarsal.
    Fung A; Loundagin LL; Edwards WB
    J Biomech; 2017 Jul; 60():22-29. PubMed ID: 28668187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.