BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 30833259)

  • 1. Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton.
    Jordan MP; Stewart AR; Eagles-Smith CA; Strecker AL
    Sci Total Environ; 2019 Jun; 667():601-612. PubMed ID: 30833259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China.
    Long SX; Hamilton PB; Yang Y; Wang S; Huang WD; Chen C; Tao R
    Environ Pollut; 2018 Aug; 239():147-160. PubMed ID: 29653305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web.
    Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD
    Sci Total Environ; 2005 Mar; 339(1-3):89-101. PubMed ID: 15740761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terrestrial organic matter increases zooplankton methylmercury accumulation in a brown-water boreal lake.
    Poste AE; Hoel CS; Andersen T; Arts MT; Færøvig PJ; Borgå K
    Sci Total Environ; 2019 Jul; 674():9-18. PubMed ID: 31003089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.
    Kainz M; Telmer K; Mazumder A
    Sci Total Environ; 2006 Sep; 368(1):271-82. PubMed ID: 16226794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zooplankton community changes confound the biodilution theory of methylmercury accumulation in a recovering mercury-contaminated lake.
    Todorova S; Driscoll CT; Matthews DA; Effler SW
    Environ Sci Technol; 2015 Apr; 49(7):4066-71. PubMed ID: 25741879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing element-specific patterns of bioaccumulation across New England lakes.
    Ward DM; Mayes B; Sturup S; Folt CL; Chen CY
    Sci Total Environ; 2012 Apr; 421-422():230-7. PubMed ID: 22356871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of autochthonous dissolved organic matter on the accumulation of methylmercury by phytoplankton and zooplankton in a eutrophic coastal ecosystem.
    Shao B; Li Z; Wu Z; Yang N; Cui X; Lin H; Liu Y; He W; Zhao Y; Wang X; Tong Y
    Environ Pollut; 2023 Nov; 336():122457. PubMed ID: 37633436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton.
    Schartup AT; Qureshi A; Dassuncao C; Thackray CP; Harding G; Sunderland EM
    Environ Sci Technol; 2018 Jan; 52(2):654-662. PubMed ID: 29227685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light.
    Faithfull CL; Mathisen P; Wenzel A; Bergström AK; Vrede T
    Oecologia; 2015 Mar; 177(3):823-835. PubMed ID: 25373827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations.
    Wu P; Kainz M; Åkerblom S; Bravo AG; Sonesten L; Branfireun B; Deininger A; Bergström AK; Bishop K
    Sci Total Environ; 2019 Jun; 669():821-832. PubMed ID: 30897439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of experimental thermocline and oxycline deepening on methylmercury bioaccumulation in a Canadian shield lake.
    Perron T; Chételat J; Gunn J; Beisner BE; Amyot M
    Environ Sci Technol; 2014; 48(5):2626-34. PubMed ID: 24512142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs.
    Wu P; Kainz MJ; Valdés F; Zheng S; Winter K; Wang R; Branfireun B; Chen CY; Bishop K
    Sci Rep; 2021 Aug; 11(1):16859. PubMed ID: 34413329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.
    Tao Y; Xue B; Lei G; Liu F; Wang Z
    Environ Pollut; 2017 Apr; 223():624-634. PubMed ID: 28173953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis.
    Wu P; Kainz MJ; Bravo AG; Åkerblom S; Sonesten L; Bishop K
    Sci Total Environ; 2019 Jan; 646():357-367. PubMed ID: 30055496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylmercury in water, seston, and epiphyton of an Amazonian river and its floodplain, Tapajós River, Brazil.
    Roulet M; Lucotte M; Guimarães JR; Rheault I
    Sci Total Environ; 2000 Oct; 261(1-3):43-59. PubMed ID: 11036976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting annual occurrence, bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes.
    Tao Y; Yu J; Liu X; Xue B; Wang S
    Water Res; 2018 Apr; 132():1-11. PubMed ID: 29304443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs.
    Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4419-23. PubMed ID: 11904388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylmercury cycling in High Arctic wetland ponds: sources and sinks.
    Lehnherr I; St Louis VL; Emmerton CA; Barker JD; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10514-22. PubMed ID: 22779785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.