These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30833407)

  • 21. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.
    Christie JR; Beekman M
    Mol Biol Evol; 2017 Mar; 34(3):677-691. PubMed ID: 28025277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.
    Hadariová L; Vesteg M; Hampl V; Krajčovič J
    Curr Genet; 2018 Apr; 64(2):365-387. PubMed ID: 29026976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).
    Fan X; Sha LN; Wang XL; Zhang HQ; Kang HY; Wang Y; Zhou YH
    Gene; 2013 Oct; 529(1):57-64. PubMed ID: 23911302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility.
    Barnard-Kubow KB; McCoy MA; Galloway LF
    New Phytol; 2017 Feb; 213(3):1466-1476. PubMed ID: 27686577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids).
    Kuroiwa T
    J Plant Res; 2010 Mar; 123(2):207-30. PubMed ID: 20145972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The model plant Medicago truncatula exhibits biparental plastid inheritance.
    Matsushima R; Hu Y; Toyoda K; Sodmergen ; Sakamoto W
    Plant Cell Physiol; 2008 Jan; 49(1):81-91. PubMed ID: 18065422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control.
    Valkov VT; Scotti N; Kahlau S; Maclean D; Grillo S; Gray JC; Bock R; Cardi T
    Plant Physiol; 2009 Aug; 150(4):2030-44. PubMed ID: 19493969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plastid biogenesis, between light and shadows.
    López-Juez E
    J Exp Bot; 2007; 58(1):11-26. PubMed ID: 17108152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plastid DNA in the nucleus: new genes for old.
    Rousseau-Gueutin M; Ayliffe MA; Timmis JN
    Plant Signal Behav; 2012 Feb; 7(2):269-72. PubMed ID: 22415049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms.
    Forsythe ES; Williams AM; Sloan DB
    Plant Cell; 2021 May; 33(4):980-997. PubMed ID: 33764472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Positive Selection in Rapidly Evolving Plastid-Nuclear Enzyme Complexes.
    Rockenbach K; Havird JC; Monroe JG; Triant DA; Taylor DR; Sloan DB
    Genetics; 2016 Dec; 204(4):1507-1522. PubMed ID: 27707788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility.
    Bogdanova VS
    Theor Appl Genet; 2007 Jan; 114(2):333-9. PubMed ID: 17080258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes.
    Korpelainen H
    Naturwissenschaften; 2004 Nov; 91(11):505-18. PubMed ID: 15452701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Evolutionary Constraints on Angiosperm Chloroplast Adaptation.
    Robbins EHJ; Kelly S
    Genome Biol Evol; 2023 Jun; 15(6):. PubMed ID: 37279504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentiation of chromoplasts and other plastids in plants.
    Sadali NM; Sowden RG; Ling Q; Jarvis RP
    Plant Cell Rep; 2019 Jul; 38(7):803-818. PubMed ID: 31079194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the plastid-encoded carboxyltransferase subunit (accD) gene of potato.
    Lee SS; Jeong WJ; Bae JM; Bang JW; Liu JR; Harn CH
    Mol Cells; 2004 Jun; 17(3):422-9. PubMed ID: 15232216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco.
    Madoka Y; Tomizawa K; Mizoi J; Nishida I; Nagano Y; Sasaki Y
    Plant Cell Physiol; 2002 Dec; 43(12):1518-25. PubMed ID: 12514249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Instability of plastid DNA in the nuclear genome.
    Sheppard AE; Timmis JN
    PLoS Genet; 2009 Jan; 5(1):e1000323. PubMed ID: 19119415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plastids unleashed: their development and their integration in plant development.
    Lopez-Juez E; Pyke KA
    Int J Dev Biol; 2005; 49(5-6):557-77. PubMed ID: 16096965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.