These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30833552)

  • 41. Investigation on the Electrochemical Properties of Antimony Tin Oxide Nanoparticle-Modified Graphene Aerogel as Cathode Matrix in Lithium-Sulfur Battery.
    Yan Y; Lin J; Chen S; Zhang S; Yang R; Xu Y; Han T
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7027-7033. PubMed ID: 32604552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries.
    Gu S; Qian R; Jin J; Wang Q; Guo J; Zhang S; Zhuo S; Wen Z
    Phys Chem Chem Phys; 2016 Oct; 18(42):29293-29299. PubMed ID: 27731873
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries.
    Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The reduction behavior of sulfurized polyacrylonitrile (SPAN) in lithium-sulfur batteries using a carbonate electrolyte: a computational study.
    Klostermann SV; Kappler J; Waigum A; Buchmeiser MR; Köhn A; Kästner J
    Phys Chem Chem Phys; 2024 Mar; 26(13):9998-10007. PubMed ID: 38477497
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conductive Mesoporous Niobium Nitride Microspheres/Nitrogen-Doped Graphene Hybrid with Efficient Polysulfide Anchoring and Catalytic Conversion for High-Performance Lithium-Sulfur Batteries.
    Li X; Gao B; Huang X; Guo Z; Li Q; Zhang X; Chu PK; Huo K
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2961-2969. PubMed ID: 30601658
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites.
    Wei S; Ma L; Hendrickson KE; Tu Z; Archer LA
    J Am Chem Soc; 2015 Sep; 137(37):12143-52. PubMed ID: 26325146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Chemical Immobilization and Catalytic Conversion of Polysulfide Intermediates Using Metallic Mo Nanoclusters for High-Performance Li-S Batteries.
    Li Y; Wang C; Wang W; Eng AYS; Wan M; Fu L; Mao E; Li G; Tang J; Seh ZW; Sun Y
    ACS Nano; 2020 Jan; 14(1):1148-1157. PubMed ID: 31834779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving Electrochemical Performance and Safety of Lithium-Sulfur Batteries by a "Bulletproof Vest".
    Zheng S; Zhang H; Fan J; Xu Q; Min Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51904-51916. PubMed ID: 33146511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigating the Electrocatalysis of a Ti
    Zhou HY; Sui ZY; Amin K; Lin LW; Wang HY; Han BH
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13904-13913. PubMed ID: 32108468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Tungsten Disulfide/Carbon Nanotube Networks as Separator Coatings and Cathode Additives for Stable and Fast Lithium-Sulfur Batteries.
    Liu J; Li K; Zhang Q; Zhang X; Liang X; Yan J; Tan HH; Yu Y; Wu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45547-45557. PubMed ID: 34528435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly stable lithium sulfur batteries enhanced by flocculation and solidification of soluble polysulfides in routine ether electrolyte.
    Xu R; Shao J; Gao K; Chen Y; Li J; Liu Y; Hou X; Ji H; Yi S; Zhang L; Liu C; Liang X; Gao Y; Zhang Z
    J Colloid Interface Sci; 2023 Nov; 649():223-233. PubMed ID: 37348342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium-Sulfur Batteries.
    Jiang Z; Guo HJ; Zeng Z; Han Z; Hu W; Wen R; Xie J
    ACS Nano; 2020 Oct; 14(10):13784-13793. PubMed ID: 32924432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Safe Electrolyte Enabled via Controllable Polysulfide Release and Efficient Conversion for Advanced Lithium-Sulfur Batteries.
    Tang B; Wu H; Du X; Cheng X; Liu X; Yu Z; Yang J; Zhang M; Zhang J; Cui G
    Small; 2020 Feb; 16(5):e1905737. PubMed ID: 31916670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphdiyne-like Porous Organic Framework as a Solid-Phase Sulfur Conversion Cathodic Host for Stable Li-S Batteries.
    Yi Y; Huang W; Tian X; Fang B; Wu Z; Zheng S; Li M; Ma H
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59983-59992. PubMed ID: 34889090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction.
    Guo J; Yang Z; Yu Y; Abruña HD; Archer LA
    J Am Chem Soc; 2013 Jan; 135(2):763-7. PubMed ID: 23234561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance.
    Li Z; Yin L
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4029-38. PubMed ID: 25625174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TiO
    Lei T; Xie Y; Wang X; Miao S; Xiong J; Yan C
    Small; 2017 Oct; 13(37):. PubMed ID: 28748580
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Locally Concentrated Ionic Liquid Electrolyte with Partially Solvating Diluent for Lithium/Sulfurized Polyacrylonitrile Batteries.
    Liu X; Diemant T; Mariani A; Dong X; Di Pietro ME; Mele A; Passerini S
    Adv Mater; 2022 Dec; 34(49):e2207155. PubMed ID: 36316232
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Antipulverization and High-Continuity Lithium Metal Anode for High-Energy Lithium Batteries.
    Ye Y; Zhao Y; Zhao T; Xu S; Xu Z; Qian J; Wang L; Xing Y; Wei L; Li Y; Wang J; Li L; Wu F; Chen R
    Adv Mater; 2021 Dec; 33(49):e2105029. PubMed ID: 34624162
    [TBL] [Abstract][Full Text] [Related]  

  • 60. C-S Bonds in Sulfur-Embedded Graphene, Carbon Nanotubes, and Flake Graphite Cathodes for Lithium-Sulfur Batteries.
    Feng Y; Zhang H; Zhang Y; Qu X
    ACS Omega; 2019 Oct; 4(15):16352-16359. PubMed ID: 31616813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.