BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30833567)

  • 1. Deep convolutional neural networks for accurate somatic mutation detection.
    Sahraeian SME; Liu R; Lau B; Podesta K; Mohiyuddin M; Lam HYK
    Nat Commun; 2019 Mar; 10(1):1041. PubMed ID: 30833567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network.
    Meng J; Victor B; He Z; Liu H; Jiang T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33164053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.
    Yuan Y; Shi Y; Li C; Kim J; Cai W; Han Z; Feng DD
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):476. PubMed ID: 28155641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample.
    Sahraeian SME; Fang LT; Karagiannis K; Moos M; Smith S; Santana-Quintero L; Xiao C; Colgan M; Hong H; Mohiyuddin M; Xiao W
    Genome Biol; 2022 Jan; 23(1):12. PubMed ID: 34996510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data.
    Ainscough BJ; Barnell EK; Ronning P; Campbell KM; Wagner AH; Fehniger TA; Dunn GP; Uppaluri R; Govindan R; Rohan TE; Griffith M; Mardis ER; Swamidass SJ; Griffith OL
    Nat Genet; 2018 Dec; 50(12):1735-1743. PubMed ID: 30397337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ensemble approach to accurately detect somatic mutations using SomaticSeq.
    Fang LT; Afshar PT; Chhibber A; Mohiyuddin M; Fan Y; Mu JC; Gibeling G; Barr S; Asadi NB; Gerstein MB; Koboldt DC; Wang W; Wong WH; Lam HY
    Genome Biol; 2015 Sep; 16(1):197. PubMed ID: 26381235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNN-Boost: Somatic mutation identification of tumor-only whole-exome sequencing data using deep neural network and XGBoost.
    Maruf FA; Pratama R; Song G
    J Bioinform Comput Biol; 2021 Dec; 19(6):2140017. PubMed ID: 34895111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.
    Sun JX; He Y; Sanford E; Montesion M; Frampton GM; Vignot S; Soria JC; Ross JS; Miller VA; Stephens PJ; Lipson D; Yelensky R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005965. PubMed ID: 29415044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the functional consequences of somatic missense mutations found in tumors.
    Carter H; Karchin R
    Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pan-cancer somatic mutation embedding using autoencoders.
    Palazzo M; Beauseroy P; Yankilevich P
    BMC Bioinformatics; 2019 Dec; 20(1):655. PubMed ID: 31829157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational concordance analysis provides supportive information for double cancer diagnosis.
    Hatakeyama K; Nagashima T; Notsu A; Ohshima K; Ohnami S; Ohnami S; Shimoda Y; Naruoka A; Maruyama K; Iizuka A; Ashizawa T; Kenmotsu H; Mochizuki T; Urakami K; Akiyama Y; Yamaguchi K
    BMC Cancer; 2021 Feb; 21(1):181. PubMed ID: 33607950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network.
    Lee K; Jeong HO; Lee S; Jeong WK
    Sci Rep; 2019 Nov; 9(1):16927. PubMed ID: 31729414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.
    Cho A; Shim JE; Kim E; Supek F; Lehner B; Lee I
    Genome Biol; 2016 Jun; 17(1):129. PubMed ID: 27333808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate de novo and transmitted indel detection in exome-capture data using microassembly.
    Narzisi G; O'Rawe JA; Iossifov I; Fang H; Lee YH; Wang Z; Wu Y; Lyon GJ; Wigler M; Schatz MC
    Nat Methods; 2014 Oct; 11(10):1033-6. PubMed ID: 25128977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of RNA- and exome sequencing: Increasing specificity for identification of somatic point mutations and indels in acute leukaemia.
    Hansen MC; Herborg LL; Hansen M; Roug AS; Hokland P
    Leuk Res; 2016 Dec; 51():27-31. PubMed ID: 27821287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics Analysis for Cell-Free Tumor DNA Sequencing Data.
    Chen S; Liu M; Zhou Y
    Methods Mol Biol; 2018; 1754():67-95. PubMed ID: 29536438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.
    Krøigård AB; Thomassen M; Lænkholm AV; Kruse TA; Larsen MJ
    PLoS One; 2016; 11(3):e0151664. PubMed ID: 27002637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.