These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 30833658)
1. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Kim D; Kim DE; Lee G; Cho SI; Kim JS Nat Biotechnol; 2019 Apr; 37(4):430-435. PubMed ID: 30833658 [TBL] [Abstract][Full Text] [Related]
2. Identifying genome-wide off-target sites of CRISPR RNA-guided nucleases and deaminases with Digenome-seq. Kim D; Kang BC; Kim JS Nat Protoc; 2021 Feb; 16(2):1170-1192. PubMed ID: 33462439 [TBL] [Abstract][Full Text] [Related]
3. Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant. Tran MTN; Khalid MKNM; Pébay A; Cook AL; Liang HH; Wong RCB; Craig JE; Liu GS; Hung SS; Hewitt AW Mol Vis; 2019; 25():174-182. PubMed ID: 30996586 [TBL] [Abstract][Full Text] [Related]
4. Current Status and Challenges of DNA Base Editing Tools. Jeong YK; Song B; Bae S Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345 [TBL] [Abstract][Full Text] [Related]
6. Profiling Genome-Wide Specificity of dCpf1 Cytidine Base Editors Using Digenome-Seq. Kim D Methods Mol Biol; 2023; 2606():33-40. PubMed ID: 36592306 [TBL] [Abstract][Full Text] [Related]
7. Off-Target Editing by CRISPR-Guided DNA Base Editors. Park S; Beal PA Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621 [TBL] [Abstract][Full Text] [Related]
8. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Song M; Kim HK; Lee S; Kim Y; Seo SY; Park J; Choi JW; Jang H; Shin JH; Min S; Quan Z; Kim JH; Kang HC; Yoon S; Kim HH Nat Biotechnol; 2020 Sep; 38(9):1037-1043. PubMed ID: 32632303 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide specificity of dCpf1 cytidine base editors. Kim D; Lim K; Kim DE; Kim JS Nat Commun; 2020 Aug; 11(1):4072. PubMed ID: 32792663 [TBL] [Abstract][Full Text] [Related]
10. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. Hu Z; Wang Y; Liu Q; Qiu Y; Zhong Z; Li K; Li W; Deng Z; Sun Y mBio; 2021 Apr; 12(2):. PubMed ID: 33879582 [TBL] [Abstract][Full Text] [Related]
11. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567 [TBL] [Abstract][Full Text] [Related]
12. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. Feng Y; Liu S; Chen R; Xie A J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189 [TBL] [Abstract][Full Text] [Related]
13. Unbiased investigation of specificities of prime editing systems in human cells. Kim DY; Moon SB; Ko JH; Kim YS; Kim D Nucleic Acids Res; 2020 Oct; 48(18):10576-10589. PubMed ID: 32941652 [TBL] [Abstract][Full Text] [Related]
14. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Coelho MA; De Braekeleer E; Firth M; Bista M; Lukasiak S; Cuomo ME; Taylor BJM Nat Commun; 2020 Aug; 11(1):4132. PubMed ID: 32807781 [TBL] [Abstract][Full Text] [Related]
15. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Sürün D; Schneider A; Mircetic J; Neumann K; Lansing F; Paszkowski-Rogacz M; Hänchen V; Lee-Kirsch MA; Buchholz F Genes (Basel); 2020 May; 11(5):. PubMed ID: 32384610 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Liang P; Xie X; Zhi S; Sun H; Zhang X; Chen Y; Chen Y; Xiong Y; Ma W; Liu D; Huang J; Songyang Z Nat Commun; 2019 Jan; 10(1):67. PubMed ID: 30622278 [TBL] [Abstract][Full Text] [Related]
17. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Kim D; Luk K; Wolfe SA; Kim JS Annu Rev Biochem; 2019 Jun; 88():191-220. PubMed ID: 30883196 [TBL] [Abstract][Full Text] [Related]
18. Defining genome-wide CRISPR-Cas genome-editing nuclease activity with GUIDE-seq. Malinin NL; Lee G; Lazzarotto CR; Li Y; Zheng Z; Nguyen NT; Liebers M; Topkar VV; Iafrate AJ; Le LP; Aryee MJ; Joung JK; Tsai SQ Nat Protoc; 2021 Dec; 16(12):5592-5615. PubMed ID: 34773119 [TBL] [Abstract][Full Text] [Related]
19. Heterologous Expression and Purification of a CRISPR-Cas9-Based Adenine Base Editor. Lee SN; Jang HS; Woo JS Methods Mol Biol; 2023; 2606():123-133. PubMed ID: 36592312 [TBL] [Abstract][Full Text] [Related]
20. Engineering of high-precision base editors for site-specific single nucleotide replacement. Tan J; Zhang F; Karcher D; Bock R Nat Commun; 2019 Jan; 10(1):439. PubMed ID: 30683865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]