These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30833776)

  • 21. Sequence-specific nucleases as tools for enhancing disease resistance in crops.
    Nekrasov V
    Transgenic Res; 2019 Aug; 28(Suppl 2):75-80. PubMed ID: 31321687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in Engineering of In Vivo Haploid Induction Systems.
    Lv J; Kelliher T
    Methods Mol Biol; 2023; 2653():365-383. PubMed ID: 36995637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction.
    Li X; Meng D; Chen S; Luo H; Zhang Q; Jin W; Yan J
    Nat Commun; 2017 Oct; 8(1):991. PubMed ID: 29062086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3.
    Lv J; Yu K; Wei J; Gui H; Liu C; Liang D; Wang Y; Zhou H; Carlin R; Rich R; Lu T; Que Q; Wang WC; Zhang X; Kelliher T
    Nat Biotechnol; 2020 Dec; 38(12):1397-1401. PubMed ID: 33169035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome Editing and Double-Fluorescence Proteins Enable Robust Maternal Haploid Induction and Identification in Maize.
    Dong L; Li L; Liu C; Liu C; Geng S; Li X; Huang C; Mao L; Chen S; Xie C
    Mol Plant; 2018 Sep; 11(9):1214-1217. PubMed ID: 30010025
    [No Abstract]   [Full Text] [Related]  

  • 26. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes.
    Liu L; Gallagher J; Arevalo ED; Chen R; Skopelitis T; Wu Q; Bartlett M; Jackson D
    Nat Plants; 2021 Mar; 7(3):287-294. PubMed ID: 33619356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis.
    Zhong Y; Chen B; Li M; Wang D; Jiao Y; Qi X; Wang M; Liu Z; Chen C; Wang Y; Chen M; Li J; Xiao Z; Cheng D; Liu W; Boutilier K; Liu C; Chen S
    Nat Plants; 2020 May; 6(5):466-472. PubMed ID: 32415294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize.
    Lorenzo CD; Debray K; Herwegh D; Develtere W; Impens L; Schaumont D; Vandeputte W; Aesaert S; Coussens G; De Boe Y; Demuynck K; Van Hautegem T; Pauwels L; Jacobs TB; Ruttink T; Nelissen H; Inzé D
    Plant Cell; 2023 Jan; 35(1):218-238. PubMed ID: 36066192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can We Use Gene-Editing to Induce Apomixis in Sexual Plants?
    Scheben A; Hojsgaard D
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32664641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes.
    Wang C; Liu Q; Shen Y; Hua Y; Wang J; Lin J; Wu M; Sun T; Cheng Z; Mercier R; Wang K
    Nat Biotechnol; 2019 Mar; 37(3):283-286. PubMed ID: 30610223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-based genome editing in wheat: a comprehensive review and future prospects.
    Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP
    Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Haploid Embryos: Being Like Mommy or Like Daddy?
    Widiez T
    Trends Plant Sci; 2021 May; 26(5):425-427. PubMed ID: 33678580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize.
    Liu L; Li W; Liu C; Chen B; Tian X; Chen C; Li J; Chen S
    BMC Plant Biol; 2018 Nov; 18(1):313. PubMed ID: 30497385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superior field performance of waxy corn engineered using CRISPR-Cas9.
    Gao H; Gadlage MJ; Lafitte HR; Lenderts B; Yang M; Schroder M; Farrell J; Snopek K; Peterson D; Feigenbutz L; Jones S; St Clair G; Rahe M; Sanyour-Doyel N; Peng C; Wang L; Young JK; Beatty M; Dahlke B; Hazebroek J; Greene TW; Cigan AM; Chilcoat ND; Meeley RB
    Nat Biotechnol; 2020 May; 38(5):579-581. PubMed ID: 32152597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing.
    Dong L; Qi X; Zhu J; Liu C; Zhang X; Cheng B; Mao L; Xie C
    Plant Biotechnol J; 2019 Oct; 17(10):1853-1855. PubMed ID: 31050154
    [No Abstract]   [Full Text] [Related]  

  • 39. Doubled Haploid Laboratory Protocol for Wheat Using Wheat-Maize Wide Hybridization.
    Santra M; Wang H; Seifert S; Haley S
    Methods Mol Biol; 2017; 1679():235-249. PubMed ID: 28913804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome editing reagent delivery in plants.
    Ghogare R; Ludwig Y; Bueno GM; Slamet-Loedin IH; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):321-335. PubMed ID: 33728594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.