These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 30833776)

  • 41. Genome editing reagent delivery in plants.
    Ghogare R; Ludwig Y; Bueno GM; Slamet-Loedin IH; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):321-335. PubMed ID: 33728594
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean.
    Chilcoat D; Liu ZB; Sander J
    Prog Mol Biol Transl Sci; 2017; 149():27-46. PubMed ID: 28712499
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DeepSort: deep convolutional networks for sorting haploid maize seeds.
    Veeramani B; Raymond JW; Chanda P
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):289. PubMed ID: 30367590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
    Soda N; Verma L; Giri J
    Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes.
    Liang Z; Chen K; Li T; Zhang Y; Wang Y; Zhao Q; Liu J; Zhang H; Liu C; Ran Y; Gao C
    Nat Commun; 2017 Jan; 8():14261. PubMed ID: 28098143
    [TBL] [Abstract][Full Text] [Related]  

  • 51. With a free pass, CRISPR-edited plants reach market in record time.
    Waltz E
    Nat Biotechnol; 2018 Jan; 36(1):6-7. PubMed ID: 29319694
    [No Abstract]   [Full Text] [Related]  

  • 52. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system.
    Wang P; Zhang J; Sun L; Ma Y; Xu J; Liang S; Deng J; Tan J; Zhang Q; Tu L; Daniell H; Jin S; Zhang X
    Plant Biotechnol J; 2018 Jan; 16(1):137-150. PubMed ID: 28499063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA-free genome editing methods for targeted crop improvement.
    Kanchiswamy CN
    Plant Cell Rep; 2016 Jul; 35(7):1469-74. PubMed ID: 27100964
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants.
    Sauer NJ; Narváez-Vásquez J; Mozoruk J; Miller RB; Warburg ZJ; Woodward MJ; Mihiret YA; Lincoln TA; Segami RE; Sanders SL; Walker KA; Beetham PR; Schöpke CR; Gocal GF
    Plant Physiol; 2016 Apr; 170(4):1917-28. PubMed ID: 26864017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing.
    Luo J; Li S; Xu J; Yan L; Ma Y; Xia L
    Mol Plant; 2021 Jun; 14(6):847-850. PubMed ID: 33812982
    [No Abstract]   [Full Text] [Related]  

  • 57. Oat Doubled Haploids Following Maize Pollination.
    Davies PA; Sidhu PK
    Methods Mol Biol; 2017; 1536():23-30. PubMed ID: 28132140
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize.
    Li Y; Lin Z; Yue Y; Zhao H; Fei X; E L; Liu C; Chen S; Lai J; Song W
    Nat Plants; 2021 Dec; 7(12):1579-1588. PubMed ID: 34887519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat.
    Liu C; Zhong Y; Qi X; Chen M; Liu Z; Chen C; Tian X; Li J; Jiao Y; Wang D; Wang Y; Li M; Xin M; Liu W; Jin W; Chen S
    Plant Biotechnol J; 2020 Feb; 18(2):316-318. PubMed ID: 31344311
    [No Abstract]   [Full Text] [Related]  

  • 60. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.